matlab级数求和:∑(1+1/2+...+1/n)/(n+1)(n+2)
时间: 2023-11-05 17:05:02 浏览: 181
1+2+...+N求和汇编
4星 · 用户满意度95%
这个级数可以通过分解分式、拆项、变形等方法来求和。
首先,将每一项分式进行拆分,得到:
(1+1/2+...+1/n)/(n+1)(n+2) = [(1/(n+1)) + (1/(n+1) + 1/(n+2)) + ... + (1/(n+1) + 1/(n+2) + ... + 1/n)]/(n+1)(n+2)
接着,将分式中的每一项进行拆分,得到:
1/(n+1) + 1/(n+1) + 1/(n+2) + ... + 1/(n+1) + 1/(n+2) + ... + 1/n
= [(n-1)/(n+1) + (n-2)/(n+2) + ... + 1/2 + 1/2] + [1/(n+1) + 1/(n+2) + ... + 1/n]
= [(n-1)/(n+1) + (n-2)/(n+2) + ... + 1/2] + [1/(n+1) + 1/(n+2) + ... + 1/n + 1/2]
= [n/(n+1) - 1/(n+1) + (n-1)/(n+2) - 1/(n+2) + ... + 2/3 - 1/3 + 1/2]/2 + [1/(n+1) + 1/(n+2) + ... + 1/n + 1/2]
= [(n-1)/2n - 1/(n+1) + (n-3)/2(n+1) - 1/(n+2) + ... + 1/6 - 1/3 + 1/2]/2 + [1/(n+1) + 1/(n+2) + ... + 1/n + 1/2]
= [(n-1)/2n - 1/(n+1) + (n-3)/2(n+1) - 1/(n+2) + ... + 1/6 - 1/3 + 1/2]/2 + [H_n - H_{n+1} + 1/2]
其中,H_n 表示调和级数,即 H_n = 1 + 1/2 + ... + 1/n。
将上式代入原级数中,得到:
∑(1+1/2+...+1/n)/(n+1)(n+2)
= [(n-1)/2n - 1/(n+1) + (n-3)/2(n+1) - 1/(n+2) + ... + 1/6 - 1/3 + 1/2]/2 + [H_n - H_{n+1} + 1/2]/[(n+1)(n+2)]
= [n/(2n+2) - H_{n+1}/(n+1) + 1/2]/2 + [H_n - H_{n+1} + 1/2]/[(n+1)(n+2)]
= [(n+1)H_n - nH_{n+1}]/[(n+1)(n+2)]
因此,该级数的和为 [(n+1)H_n - nH_{n+1}]/[(n+1)(n+2)]。
阅读全文