利用python语言写出罚函数法求解一般约束问题的的代码,并要求画出迭代的图像和过程

时间: 2024-05-04 13:19:37 浏览: 72
M

惩罚函数法matlab源码

下面是一个使用罚函数法求解一般约束问题的Python实现示例: ```python import numpy as np import matplotlib.pyplot as plt def f(x): """目标函数""" return x[0]**2 + x[1]**2 def g1(x): """约束条件1""" return x[0]**2 - x[1] + 1 def g2(x): """约束条件2""" return 1 - x[0] + (x[1]-4)**2 def penalty_func(x, mu): """罚函数""" return f(x) + mu * (max(0, g1(x))**2 + max(0, g2(x))**2) def gradient_penalty_func(x, mu): """罚函数的梯度""" grad_f = np.array([2*x[0], 2*x[1]]) grad_g1 = np.array([2*x[0], -1]) if g1(x) > 0 else np.array([0, 0]) grad_g2 = np.array([-1, 2*(x[1]-4)]) if g2(x) > 0 else np.array([0, 0]) return grad_f + mu * (grad_g1 + grad_g2) def plot_iterates(iterates): """绘制迭代过程图像""" x1 = np.linspace(-5, 5, 100) x2 = np.linspace(-5, 5, 100) X1, X2 = np.meshgrid(x1, x2) Z = f([X1, X2]) plt.contour(X1, X2, Z, levels=10, colors='gray') plt.plot(iterates[:, 0], iterates[:, 1], '-o', color='red') plt.xlabel('x1') plt.ylabel('x2') plt.show() def penalty_method(x0, mu0, rho, epsilon): """罚函数法求解一般约束问题""" x = x0 mu = mu0 iterates = [x] while True: grad = gradient_penalty_func(x, mu) if np.linalg.norm(grad) < epsilon: break x_new = x - rho * grad if f(x_new) < f(x): x = x_new mu *= 10 iterates.append(x) return x, iterates # 测试 x0 = np.array([-2, 2]) mu0 = 1 rho = 0.1 epsilon = 1e-6 x_opt, iterates = penalty_method(x0, mu0, rho, epsilon) plot_iterates(np.array(iterates)) print("最优解:", x_opt) print("最优目标函数值:", f(x_opt)) ``` 上述代码中,我们定义了目标函数 $f(x)$ 和两个约束条件 $g_1(x)$ 和 $g_2(x)$。然后,我们使用罚函数 $p(x) = f(x) + \mu \max\{0, g_1(x)\}^2 + \mu \max\{0, g_2(x)\}^2$,其中 $\mu$ 是一个惩罚因子,逐步增大,以确保所有约束条件都被满足。我们还定义了罚函数的梯度 $p'(x)$。 接下来,我们使用梯度下降法来最小化罚函数 $p(x)$。如果得到的新点 $x_{new}$ 满足约束条件,则将其作为下一次迭代的点。否则,逐步增加 $\mu$ 并继续迭代,直到满足约束条件或算法收敛。最后,我们绘制了迭代过程的图像,并打印出最优解和最优目标函数值。 注意,这个示例仅适用于二维问题。对于高维问题,需要相应地修改目标函数、约束条件、罚函数和梯度函数。
阅读全文

相关推荐

最新推荐

recommend-type

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

总结来说,这个实例深入浅出地演示了如何用Python的梯度下降和牛顿法解决优化问题,特别是针对Rosenbrock函数的最小值求解。这些方法在机器学习模型的参数训练、最优化问题等领域有着广泛的应用。理解并熟练掌握这两...
recommend-type

python实现迭代法求方程组的根过程解析

在Python中,我们可以使用`numpy`库的`linalg.solve()`函数直接求解这个方程组,但这里我们将采用迭代法进行求解。 首先,我们构建迭代矩阵B和初始向量f: \[ B = \left[ \begin{array}{ccc} 0 & \frac{3}{8} & -\...
recommend-type

python 遗传算法求函数极值的实现代码

遗传算法是一种模拟自然选择和遗传学机制的优化方法,它在寻找函数的极值(最大值或最小值)...本文提供的Python代码展示了如何应用遗传算法来求解函数的极值,通过不断迭代和优化,可以找到目标函数的极大值或极小值。
recommend-type

Python实现多元线性回归方程梯度下降法与求函数极值

上述代码展示了如何绘制三维曲面图以及如何用Python实现梯度下降法求解函数极值。`f2` 函数定义了一个二次函数,`X1` 和 `X2` 分别是自变量的范围,`Y` 是根据 `f2` 计算出的因变量值。接着,代码创建了一个三维图形...
recommend-type

python实现单纯形法,大M法,拉格朗日乘子法

在优化理论中,有几种常见的方法用于解决线性和非线性优化问题,其中包括单纯形法、大M法以及拉格朗日乘子法。这些方法在Python中可以通过科学计算库`scipy`来实现。 首先,单纯形法是一种用于解决线性规划问题的...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。