YOLOv8 Applications in Smart City Construction: Technological Innovations in Urban Management and Environmental Monitoring

发布时间: 2024-09-14 01:11:05 阅读量: 31 订阅数: 21
PDF

Smart City and Green Growth

# YOLOv8 Application in Smart City Construction: Technological Innovations in Urban Management and Environmental Monitoring ## 1. Overview of YOLOv8 YOLOv8 is a real-time object detection algorithm released in 2022, known for its outstanding performance and speed. It is based on the YOLOv7 architecture and incorporates several improvements, including: - **Bag-of-Freebies (BoF)**: A series of verified training techniques that improve model accuracy and speed. - **Deep Supervision**: Supervision loss added at different stages of the network to enhance feature learning. - **Path Aggregation Network (PAN)**: A feature fusion module used to aggregate features of different scales. - **Spatial Attention Module (SAM)**: A spatial attention mechanism to highlight target areas. These improvements enable YOLOv8 to achieve an AP (Average Precision) of 76.8% on the COCO dataset while maintaining an inference speed of up to 160 FPS. The combination of speed and accuracy makes YOLOv8 an ideal choice for applications such as urban management, environmental monitoring, and smart city construction. ## 2. Application of YOLOv8 in Urban Management ### 2.1 Analysis of Crowd Density #### 2.1.1 Crowd Counting and Distribution Analysis An important application of YOLOv8 in urban management is the analysis of crowd density, including crowd counting and distribution analysis. By deploying cameras in key urban areas, the YOLOv8 model can detect and count crowds in real-time and analyze their distribution patterns. ```python import cv2 import numpy as np # Load the YOLOv8 model net = cv2.dnn.readNet("yolov8.weights", "yolov8.cfg") # Initialize video stream cap = cv2.VideoCapture("city_street.mp4") while True: # Read a frame ret, frame = cap.read() if not ret: break # Preprocess the frame blob = cv2.dnn.blobFromImage(frame, 1/255.0, (640, 640), (0,0,0), swapRB=True, crop=False) # Set the input to the model net.setInput(blob) # Forward propagation detections = net.forward() # Post-process the detection results for detection in detections: # Get the detection box and confidence x, y, w, h, conf = detection[0:5] # Filter out low-confidence detections if conf > 0.5: # Calculate the center point and size of the detection box cx, cy = x + w/2, y + h/2 width, height = w, h # Draw the detection box and label cv2.rectangle(frame, (int(cx - width/2), int(cy - height/2)), (int(cx + width/2), int(cy + height/2)), (0, 255, 0), 2) cv2.putText(frame, "Person", (int(cx), int(cy - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Display the frame cv2.imshow("Crowd Density Analysis", frame) # Exit by pressing 'q' if cv2.waitKey(1) & 0xFF == ord("q"): break # Release resources cap.release() cv2.destroyAllWindows() ``` **Code Logic Analysis:** 1. Load the YOLOv8 model. 2. Initialize video stream. 3. Loop to read frames. 4. Preprocess the frame into the format required by the YOLOv8 model. 5. Set the model input. 6. Forward propagation to obtain detection results. 7. Post-process detection results, filtering out low-confidence detections. 8. Calculate the center point and size of the detection box. 9. Draw the detection box and label. 10. Display the frame. 11. Exit by pressing 'q'. 12. Release resources. **Parameter Description:** * `yolov8.weights`: Path to the YOLOv8 model weight file. * `yolov8.cfg`: Path to the YOLOv8 model configuration file. * `city_street.mp4`: Input video file path. * `0.5`: Detection confidence threshold. #### 2.1.2 Crowd Flow Monitoring and Abnormal Behavior Detection In addition to crowd counting and distribution analysis, YOLOv8 can also be used for crowd flow monitoring and abnormal behavior recognition. By analyzing the movement patterns of crowds, YOLOv8 can identify abnormal behaviors such as crowding, stampedes, or violent incidents. ```python import cv2 import numpy as np # Load the YOLOv8 model net = cv2.dnn.readNet("yolov8.weights", "yolov8.cfg") # Initialize video stream cap = cv2.VideoCapture("city_street.mp4") # Initialize background subtractor bg_subtractor = cv2.createBackgroundSubtractorMOG2() while True: # Read a frame ret, frame = cap.read() if not ret: break # Preprocess the frame blob = cv2.dnn.blobFromImage(frame, 1/255.0, (640, 640), (0,0,0), swapRB=True, crop=False) # Set the model input net.setInput(blob) # Forward propagation detections = net.forward() # Post-process the detection results for detection in detections: # Get the detection box and confidence x, y, w, h, conf = detection[0:5] # Filter out low-confidence detections if conf > 0.5: # Calculate the center point and size of the detection box cx, cy = x + w/2, y + h/2 width, height = w, h # Draw the detection box and label cv2.rectangle(frame, (int(cx - width/2), int(cy - height/2)), (int(cx + width/2), int(cy + height/2)), (0, 255, 0), 2) cv2.putText(frame, "Person", (int(cx), int(cy - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Background subtraction fg_mask = bg_subtractor.apply(frame) # Morphological operations of dilation and erosion kernel = np.ones((5,5),np.uint8) fg_mask = cv2.dilate(fg_mask, kernel, iterations=2) fg_mask = cv2.erode(fg_mask, kernel, iterations=2) # Find contours contours, _ = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Analyze contours for contour in contours: # Calculate the area of the contour area = cv2.contourArea(contour) # Filter out small area contours if area < 1000: continue # Calculate the bounding rectangle of the contour x, y, w, h = cv2.boundingRect(contour) # Draw the bounding rectangle and label cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.putText(frame, "Abnormal Behavior", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # Display the frame cv2.imshow("Crowd Flow Monitoring and Abnormal Behavior Detection", frame) # Exit by pressing 'q' if cv2.waitKey(1) & 0xFF == ord("q"): break # Release resources cap.release() cv2.destroyAllWindows() ``` **Code Logic Analysis:** 1. Load the YOLOv8 model. 2. Initialize video stream. 3. Initialize background subtractor. 4. Loop to read frames. 5. Preprocess the frame into the format required by the YOLOv8 model. 6. Set the model input. 7. Forward propagation to obtain detection results. 8. Post-process detection results, filtering out low-confidence detections. 9. Calculate the center point and size of the detection box. 10. Draw the detection box and label. 11. Perform background subtraction. 12. Apply morphological operations. 13. Find contours. 14. Analyze contours, filtering out small area contours. 15. Calculate the bounding rectangle of the contour. 16. Draw the bounding rectangle and label. 17. Display the frame. 18. Exit by pressing 'q'. 19. Release resources. **Parameter Description:** * `yolov8.weights`: Path to the YOLOv8 model weight file. * `yolov8.cfg`: Path to the YOLOv8 model configuration file. * `city_street.mp4`: Input video file path. * `1000`: Area threshold for filtering small area contours. ## ***r Quality Monitoring with YOLOv8 ### 3.1 Air Pollution Source Identification The application of YOLOv8 in air pollution source identification is mainly reflected in the real-time monitoring of pollution sources such as chi
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【材料选择专家指南】:如何用最低成本升级漫步者R1000TC北美版音箱

# 摘要 本文旨在深入探讨漫步者R1000TC北美版音箱的升级理论与实践操作指南。首先分析了音箱升级的重要性、音质构成要素,以及如何评估升级对音质的影响。接着介绍了音箱组件工作原理,特别是扬声器单元和分频器的作用及其选择原则。第三章着重于实践操作,提供扬声器单元、分频器和线材的升级步骤与技巧。第四章讨论了升级效果的评估方法,包括使用音频测试软件和主观听感分析。最后,第五章探讨了进阶升级方案,如音频接口和蓝牙模块的扩展,以及个性化定制声音风格的策略。通过本文,读者可以全面了解音箱升级的理论基础、操作技巧以及如何实现个性化的声音定制。 # 关键字 音箱升级;音质提升;扬声器单元;分频器;调音技巧

【PyQt5控件进阶】:日期选择器、列表框和文本编辑器深入使用

![【PyQt5控件进阶】:日期选择器、列表框和文本编辑器深入使用](https://img-blog.csdnimg.cn/direct/f75cf9185a96492497da129e48dad3d3.png) # 摘要 PyQt5是一个功能强大的跨平台GUI框架,它提供了丰富的控件用于构建复杂的应用程序。本文从PyQt5的基础回顾和控件概述开始,逐步深入探讨了日期选择器、列表框和文本编辑器等控件的高级应用和技巧。通过对控件属性、方法和信号与槽机制的详细分析,结合具体的实践项目,本文展示了如何实现复杂日期逻辑、动态列表数据管理和高级文本编辑功能。此外,本文还探讨了控件的高级布局和样式设计

MAXHUB后台管理新手速成:界面概览至高级功能,全方位操作教程

![MAXHUB后台管理新手速成:界面概览至高级功能,全方位操作教程](https://www.wnkj88.com/resource/images/b27ec4ac436e49a2b463d88f5c3dd14b_43.png) # 摘要 MAXHUB后台管理平台作为企业级管理解决方案,为用户提供了一个集成的环境,涵盖了用户界面布局、操作概览、核心管理功能、数据分析与报告,以及高级功能的深度应用。本论文详细介绍了平台的登录、账号管理、系统界面布局和常用工具。进一步探讨了用户与权限管理、内容管理与发布、设备管理与监控的核心功能,以及如何通过数据分析和报告制作提供决策支持。最后,论述了平台的高

深入解析MapSource地图数据管理:存储与检索优化之法

![MapSource](https://www.maptive.com/wp-content/uploads/2021/03/route-planner-multiple-stops-routes-1024x501.jpg) # 摘要 本文对MapSource地图数据管理系统进行了全面的分析与探讨,涵盖了数据存储机制、高效检索技术、数据压缩与缓存策略,以及系统架构设计和安全性考量。通过对地图数据存储原理、格式解析、存储介质选择以及检索算法的比较和优化,本文揭示了提升地图数据管理效率和检索性能的关键技术。同时,文章深入探讨了地图数据压缩与缓存对系统性能的正面影响,以及系统架构在确保数据一致性

【结果与讨论的正确打开方式】:展示发现并分析意义

![IEEE期刊论文格式模板word](http://opentextbc.ca/writingforsuccess/wp-content/uploads/sites/107/2015/08/chap9_11.png) # 摘要 本文深入探讨了撰写研究论文时结果与讨论的重要性,分析了不同结果呈现技巧对于理解数据和传达研究发现的作用。通过对结果的可视化表达、比较分析以及逻辑结构的组织,本文强调了清晰呈现数据和结论的方法。在讨论部分,提出了如何有效地将讨论与结果相结合、如何拓宽讨论的深度与广度以及如何提炼创新点。文章还对分析方法的科学性、结果分析的深入挖掘以及案例分析的启示进行了评价和解读。最后

药店管理系统全攻略:UML设计到实现的秘籍(含15个实用案例分析)

![药店管理系统全攻略:UML设计到实现的秘籍(含15个实用案例分析)](https://sae.unb.br/cae/conteudo/unbfga/sbd/imagens/modelagem1.png) # 摘要 本论文首先概述了药店管理系统的基本结构和功能,接着介绍了UML理论在系统设计中的应用,详细阐述了用例图、类图的设计原则与实践。文章第三章转向系统的开发与实现,涉及开发环境选择、数据库设计、核心功能编码以及系统集成与测试。第四章通过实践案例深入探讨了UML在药店管理系统中的应用,包括序列图、活动图、状态图及组件图的绘制和案例分析。最后,论文对药店管理系统的优化与维护进行了讨论,提

【555定时器全解析】:掌握方波发生器搭建的五大秘籍与实战技巧

![【555定时器全解析】:掌握方波发生器搭建的五大秘籍与实战技巧](https://cdn.hackaday.io/images/7292061408987432848.png) # 摘要 本文详细介绍了555定时器的工作原理、关键参数、电路搭建基础及其在方波发生器、实战应用案例以及高级应用中的具体运用。首先,概述了555定时器的基本功能和工作模式,然后深入探讨了其在方波发生器设计中的应用,包括频率和占空比的控制,以及实际实验技巧。接着,通过多个实战案例,如简易报警器和脉冲发生器的制作,展示了555定时器在日常项目中的多样化运用。最后,分析了555定时器的多用途扩展应用,探讨了其替代技术,

【Allegro Gerber导出深度优化技巧】:提升设计效率与质量的秘诀

![【Allegro Gerber导出深度优化技巧】:提升设计效率与质量的秘诀](https://img-blog.csdnimg.cn/64b75e608e73416db8bd8acbaa551c64.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dzcV82NjY=,size_16,color_FFFFFF,t_70) # 摘要 本文全面介绍了Allegro Gerber导出技术,阐述了Gerber格式的基础理论,如其历史演化、

Profinet通讯优化:7大策略快速提升1500编码器响应速度

![1500与编码器Profinet通讯文档](https://img-blog.csdnimg.cn/direct/7e3d44fda35e481eaa030b70af43c3e1.png) # 摘要 Profinet作为一种工业以太网通讯技术,其通讯性能和编码器的响应速度对工业自动化系统至关重要。本文首先概述了Profinet通讯与编码器响应速度的基础知识,随后深入分析了影响Profinet通讯性能的关键因素,包括网络结构、数据交换模式及编码器配置。通过优化网络和编码器配置,本文提出了一系列提升Profinet通讯性能的实践策略。进一步,本文探讨了利用实时性能监控、网络通讯协议优化以及预

【时间戳转换秘籍】:将S5Time转换为整数的高效算法与陷阱分析

![Step7——整数INT_时间S5Time及Time相互转换.docx](https://querix.com/go/beginner/Content/Resources/Images/05_workbench/01_ls/04_how_to/05_debug/01_dbg_alg/debug_steps.png) # 摘要 时间戳转换在计算机科学与信息技术领域扮演着重要角色,它涉及到日志分析、系统监控以及跨系统时间同步等多个方面。本文首先介绍了时间戳转换的基本概念和重要性,随后深入探讨了S5Time与整数时间戳的理论基础,包括它们的格式解析、定义以及时间单位对转换算法的影响。本文重点分

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )