YOLOv8 Applications in Smart City Construction: Technological Innovations in Urban Management and Environmental Monitoring

发布时间: 2024-09-14 01:11:05 阅读量: 20 订阅数: 38
# YOLOv8 Application in Smart City Construction: Technological Innovations in Urban Management and Environmental Monitoring ## 1. Overview of YOLOv8 YOLOv8 is a real-time object detection algorithm released in 2022, known for its outstanding performance and speed. It is based on the YOLOv7 architecture and incorporates several improvements, including: - **Bag-of-Freebies (BoF)**: A series of verified training techniques that improve model accuracy and speed. - **Deep Supervision**: Supervision loss added at different stages of the network to enhance feature learning. - **Path Aggregation Network (PAN)**: A feature fusion module used to aggregate features of different scales. - **Spatial Attention Module (SAM)**: A spatial attention mechanism to highlight target areas. These improvements enable YOLOv8 to achieve an AP (Average Precision) of 76.8% on the COCO dataset while maintaining an inference speed of up to 160 FPS. The combination of speed and accuracy makes YOLOv8 an ideal choice for applications such as urban management, environmental monitoring, and smart city construction. ## 2. Application of YOLOv8 in Urban Management ### 2.1 Analysis of Crowd Density #### 2.1.1 Crowd Counting and Distribution Analysis An important application of YOLOv8 in urban management is the analysis of crowd density, including crowd counting and distribution analysis. By deploying cameras in key urban areas, the YOLOv8 model can detect and count crowds in real-time and analyze their distribution patterns. ```python import cv2 import numpy as np # Load the YOLOv8 model net = cv2.dnn.readNet("yolov8.weights", "yolov8.cfg") # Initialize video stream cap = cv2.VideoCapture("city_street.mp4") while True: # Read a frame ret, frame = cap.read() if not ret: break # Preprocess the frame blob = cv2.dnn.blobFromImage(frame, 1/255.0, (640, 640), (0,0,0), swapRB=True, crop=False) # Set the input to the model net.setInput(blob) # Forward propagation detections = net.forward() # Post-process the detection results for detection in detections: # Get the detection box and confidence x, y, w, h, conf = detection[0:5] # Filter out low-confidence detections if conf > 0.5: # Calculate the center point and size of the detection box cx, cy = x + w/2, y + h/2 width, height = w, h # Draw the detection box and label cv2.rectangle(frame, (int(cx - width/2), int(cy - height/2)), (int(cx + width/2), int(cy + height/2)), (0, 255, 0), 2) cv2.putText(frame, "Person", (int(cx), int(cy - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Display the frame cv2.imshow("Crowd Density Analysis", frame) # Exit by pressing 'q' if cv2.waitKey(1) & 0xFF == ord("q"): break # Release resources cap.release() cv2.destroyAllWindows() ``` **Code Logic Analysis:** 1. Load the YOLOv8 model. 2. Initialize video stream. 3. Loop to read frames. 4. Preprocess the frame into the format required by the YOLOv8 model. 5. Set the model input. 6. Forward propagation to obtain detection results. 7. Post-process detection results, filtering out low-confidence detections. 8. Calculate the center point and size of the detection box. 9. Draw the detection box and label. 10. Display the frame. 11. Exit by pressing 'q'. 12. Release resources. **Parameter Description:** * `yolov8.weights`: Path to the YOLOv8 model weight file. * `yolov8.cfg`: Path to the YOLOv8 model configuration file. * `city_street.mp4`: Input video file path. * `0.5`: Detection confidence threshold. #### 2.1.2 Crowd Flow Monitoring and Abnormal Behavior Detection In addition to crowd counting and distribution analysis, YOLOv8 can also be used for crowd flow monitoring and abnormal behavior recognition. By analyzing the movement patterns of crowds, YOLOv8 can identify abnormal behaviors such as crowding, stampedes, or violent incidents. ```python import cv2 import numpy as np # Load the YOLOv8 model net = cv2.dnn.readNet("yolov8.weights", "yolov8.cfg") # Initialize video stream cap = cv2.VideoCapture("city_street.mp4") # Initialize background subtractor bg_subtractor = cv2.createBackgroundSubtractorMOG2() while True: # Read a frame ret, frame = cap.read() if not ret: break # Preprocess the frame blob = cv2.dnn.blobFromImage(frame, 1/255.0, (640, 640), (0,0,0), swapRB=True, crop=False) # Set the model input net.setInput(blob) # Forward propagation detections = net.forward() # Post-process the detection results for detection in detections: # Get the detection box and confidence x, y, w, h, conf = detection[0:5] # Filter out low-confidence detections if conf > 0.5: # Calculate the center point and size of the detection box cx, cy = x + w/2, y + h/2 width, height = w, h # Draw the detection box and label cv2.rectangle(frame, (int(cx - width/2), int(cy - height/2)), (int(cx + width/2), int(cy + height/2)), (0, 255, 0), 2) cv2.putText(frame, "Person", (int(cx), int(cy - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Background subtraction fg_mask = bg_subtractor.apply(frame) # Morphological operations of dilation and erosion kernel = np.ones((5,5),np.uint8) fg_mask = cv2.dilate(fg_mask, kernel, iterations=2) fg_mask = cv2.erode(fg_mask, kernel, iterations=2) # Find contours contours, _ = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Analyze contours for contour in contours: # Calculate the area of the contour area = cv2.contourArea(contour) # Filter out small area contours if area < 1000: continue # Calculate the bounding rectangle of the contour x, y, w, h = cv2.boundingRect(contour) # Draw the bounding rectangle and label cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.putText(frame, "Abnormal Behavior", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # Display the frame cv2.imshow("Crowd Flow Monitoring and Abnormal Behavior Detection", frame) # Exit by pressing 'q' if cv2.waitKey(1) & 0xFF == ord("q"): break # Release resources cap.release() cv2.destroyAllWindows() ``` **Code Logic Analysis:** 1. Load the YOLOv8 model. 2. Initialize video stream. 3. Initialize background subtractor. 4. Loop to read frames. 5. Preprocess the frame into the format required by the YOLOv8 model. 6. Set the model input. 7. Forward propagation to obtain detection results. 8. Post-process detection results, filtering out low-confidence detections. 9. Calculate the center point and size of the detection box. 10. Draw the detection box and label. 11. Perform background subtraction. 12. Apply morphological operations. 13. Find contours. 14. Analyze contours, filtering out small area contours. 15. Calculate the bounding rectangle of the contour. 16. Draw the bounding rectangle and label. 17. Display the frame. 18. Exit by pressing 'q'. 19. Release resources. **Parameter Description:** * `yolov8.weights`: Path to the YOLOv8 model weight file. * `yolov8.cfg`: Path to the YOLOv8 model configuration file. * `city_street.mp4`: Input video file path. * `1000`: Area threshold for filtering small area contours. ## ***r Quality Monitoring with YOLOv8 ### 3.1 Air Pollution Source Identification The application of YOLOv8 in air pollution source identification is mainly reflected in the real-time monitoring of pollution sources such as chi
corwn 最低0.47元/天 解锁专栏
买1年送3个月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

专栏目录

最低0.47元/天 解锁专栏
买1年送3个月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【R语言统计推断】:ismev包在假设检验中的高级应用技巧

![R语言数据包使用详细教程ismev](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. R语言与统计推断基础 ## 1.1 R语言简介 R语言是一种用于统计分析、图形表示和报告的编程语言和软件环境。由于其强大的数据处理能力、灵活的图形系统以及开源性质,R语言被广泛应用于学术研究、数据分析和机器学习等领域。 ## 1.2 统计推断基础 统计推断是统计学中根据样本数据推断总体特征的过程。它包括参数估计和假设检验两大主要分支。参数估计涉及对总体参数(如均值、方差等)的点估计或区间估计。而

【R语言编程实践手册】:evir包解决实际问题的有效策略

![R语言数据包使用详细教程evir](https://i0.hdslb.com/bfs/article/banner/5e2be7c4573f57847eaad69c9b0b1dbf81de5f18.png) # 1. R语言与evir包概述 在现代数据分析领域,R语言作为一种高级统计和图形编程语言,广泛应用于各类数据挖掘和科学计算场景中。本章节旨在为读者提供R语言及其生态中一个专门用于极端值分析的包——evir——的基础知识。我们从R语言的简介开始,逐步深入到evir包的核心功能,并展望它在统计分析中的重要地位和应用潜力。 首先,我们将探讨R语言作为一种开源工具的优势,以及它如何在金融

R语言YieldCurve包优化教程:债券投资组合策略与风险管理

# 1. R语言YieldCurve包概览 ## 1.1 R语言与YieldCurve包简介 R语言作为数据分析和统计计算的首选工具,以其强大的社区支持和丰富的包资源,为金融分析提供了强大的后盾。YieldCurve包专注于债券市场分析,它提供了一套丰富的工具来构建和分析收益率曲线,这对于投资者和分析师来说是不可或缺的。 ## 1.2 YieldCurve包的安装与加载 在开始使用YieldCurve包之前,首先确保R环境已经配置好,接着使用`install.packages("YieldCurve")`命令安装包,安装完成后,使用`library(YieldCurve)`加载它。 ``

【R语言极值事件预测】:评估和预测极端事件的影响,evd包的全面指南

![【R语言极值事件预测】:评估和预测极端事件的影响,evd包的全面指南](https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/d07753fad3b1c25412ff7536176f54577604b1a1/14-Figure2-1.png) # 1. R语言极值事件预测概览 R语言,作为一门功能强大的统计分析语言,在极值事件预测领域展现出了其独特的魅力。极值事件,即那些在统计学上出现概率极低,但影响巨大的事件,是许多行业风险评估的核心。本章节,我们将对R语言在极值事件预测中的应用进行一个全面的概览。 首先,我们将探究极值事

【保险行业extRemes案例】:极端值理论的商业应用,解读行业运用案例

![R语言数据包使用详细教程extRemes](https://static1.squarespace.com/static/58eef8846a4963e429687a4d/t/5a8deb7a9140b742729b5ed0/1519250302093/?format=1000w) # 1. 极端值理论概述 极端值理论是统计学的一个重要分支,专注于分析和预测在数据集中出现的极端情况,如自然灾害、金融市场崩溃或保险索赔中的异常高额索赔。这一理论有助于企业和机构理解和量化极端事件带来的风险,并设计出更有效的应对策略。 ## 1.1 极端值理论的定义与重要性 极端值理论提供了一组统计工具,

R语言代码复用与维护:模块化设计的高级教程

![R语言代码复用与维护:模块化设计的高级教程](https://statisticsglobe.com/wp-content/uploads/2022/03/return-Function-R-Programming-Language-TN-1024x576.png) # 1. R语言代码复用与维护的重要性 ## 1.1 提升开发效率 在数据分析和统计计算领域,R语言因其灵活和强大的数据处理能力而广受欢迎。代码复用不仅能够显著提升开发效率,而且可以提高代码的可读性和可维护性。在处理复杂项目时,通过复用已有的代码片段或函数,可以大幅减少重复代码编写的工作量,使开发者能够专注于解决更具有挑战性

【自定义数据包】:R语言创建自定义函数满足特定需求的终极指南

![【自定义数据包】:R语言创建自定义函数满足特定需求的终极指南](https://media.geeksforgeeks.org/wp-content/uploads/20200415005945/var2.png) # 1. R语言基础与自定义函数简介 ## 1.1 R语言概述 R语言是一种用于统计计算和图形表示的编程语言,它在数据挖掘和数据分析领域广受欢迎。作为一种开源工具,R具有庞大的社区支持和丰富的扩展包,使其能够轻松应对各种统计和机器学习任务。 ## 1.2 自定义函数的重要性 在R语言中,函数是代码重用和模块化的基石。通过定义自定义函数,我们可以将重复的任务封装成可调用的代码

【R语言时间序列预测大师】:利用evdbayes包制胜未来

![【R语言时间序列预测大师】:利用evdbayes包制胜未来](https://img-blog.csdnimg.cn/20190110103854677.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zNjY4ODUxOQ==,size_16,color_FFFFFF,t_70) # 1. R语言与时间序列分析基础 在数据分析的广阔天地中,时间序列分析是一个重要的分支,尤其是在经济学、金融学和气象学等领域中占据

R语言数据包性能监控:实时追踪与优化技巧

![R语言数据包性能监控:实时追踪与优化技巧](https://www.kaizen-r.com/wp-content/uploads/2020/07/Memory_usage_test-1024x593.png) # 1. R语言数据包性能监控概述 在数据科学领域,R语言因其强大的数据处理能力而被广泛使用。然而,随着数据集的规模日益增长,数据包的性能监控变得至关重要,它能够帮助开发者和数据分析师保证数据处理任务的高效性和稳定性。本章将为读者提供一个关于R语言数据包性能监控的概览,涵盖监控的必要性、监控过程中可能遇到的挑战,以及监控对优化工作的潜在影响。通过这一章节,读者将建立起对性能监控工

【R语言parma包案例分析】:经济学数据处理与分析,把握经济脉动

![【R语言parma包案例分析】:经济学数据处理与分析,把握经济脉动](https://siepsi.com.co/wp-content/uploads/2022/10/t13-1024x576.jpg) # 1. 经济学数据处理与分析的重要性 经济数据是现代经济学研究和实践的基石。准确和高效的数据处理不仅关系到经济模型的构建质量,而且直接影响到经济预测和决策的准确性。本章将概述为什么在经济学领域中,数据处理与分析至关重要,以及它们是如何帮助我们更好地理解复杂经济现象和趋势。 经济学数据处理涉及数据的采集、清洗、转换、整合和分析等一系列步骤,这不仅是为了保证数据质量,也是为了准备适合于特

专栏目录

最低0.47元/天 解锁专栏
买1年送3个月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )