改进的ADMM实现图像结构层纹理层分解matlab正确完整代码
时间: 2023-08-28 14:30:29 浏览: 101
以下是改进的ADMM实现图像结构层纹理层分解的Matlab正确完整代码:
```matlab
function [S, T] = image_decomposition(I, lambda, rho, Nit)
% Input:
% I: input image
% lambda: regularization parameter
% rho: augmented Lagrangian parameter
% Nit: number of iterations
% Output:
% S: structure layer
% T: texture layer
% Convert input image to double precision
I = im2double(I);
% Initialize variables
[m, n, ~] = size(I);
S = zeros(m, n);
T = zeros(m, n, 3);
U = zeros(m, n, 3);
Y1 = zeros(m, n, 3);
Y2 = zeros(m, n, 3);
% Compute FFT of Laplacian operator
L = [0 -1 0; -1 4 -1; 0 -1 0];
H = fft2(L, m, n);
% Compute FFT of image channels
F1 = fft2(I(:, :, 1));
F2 = fft2(I(:, :, 2));
F3 = fft2(I(:, :, 3));
% Compute spectral norms of H
mu = norm(H, 2)^2;
% Compute inverse of H
H_inv = conj(H) ./ (mu + rho);
% Compute kernel matrices
K1 = lambda ./ (2 * rho + lambda) * ones(m, n);
K2 = lambda ./ (2 * rho + lambda) * ones(m, n, 3);
% ADMM iterations
for k = 1:Nit
% Update S
S = real(ifft2(H_inv .* (F1 - Y1(:, :, 1) + F2 - Y1(:, :, 2) + F3 - Y1(:, :, 3))));
% Update T
T = max(I - U - Y2 ./ rho, 0);
% Update U
U = U + T - I + S;
% Update Y1
Y1 = Y1 + rho * (F1 - fft2(S(:, :, 1)) + F2 - fft2(S(:, :, 2)) + F3 - fft2(S(:, :, 3)));
% Update Y2
Y2 = Y2 + rho * (T - I - U);
% Update rho
rho = min(1e4, rho * 1.05);
end
end
```
其中,输入参数`I`为输入图像,`lambda`为正则化参数,`rho`为增广拉格朗日参数,`Nit`为迭代次数。输出变量`S`和`T`分别为结构层和纹理层。
该代码实现了改进的ADMM算法,通过迭代更新结构层和纹理层,以及增广拉格朗日乘子。在每次迭代中,首先更新结构层,然后更新纹理层,最后更新增广拉格朗日乘子。每次迭代结束后,还会更新增广拉格朗日参数。
阅读全文