def update(self): if len(self.replay_buffer) < self.batch_size: return samples = np.array(random.sample(self.replay_buffer, self.batch_size), dtype=object) states = np.stack(samples[:, 0]) actions = np.stack(samples[:, 1]) rewards = np.stack(samples[:, 2]) next_states = np.stack(samples[:, 3]) dones = np.stack(samples[:, 4])
时间: 2024-03-07 07:52:59 浏览: 73
这段代码看起来像是强化学习中的经验回放(experience replay)的代码。可以看出,这个函数的作用是从回放缓存中采样一些经验,然后用它们来更新神经网络模型。具体来说,这个函数首先判断回放缓存中是否有足够的经验,如果没有则直接返回。然后,它从回放缓存中随机采样一些经验,并将这些经验的状态、动作、奖励、下一个状态以及终止标志分别存储到不同的变量中。最后,这些变量将被用于更新神经网络模型。
相关问题
if len(self.replay_buffer.buffer) > batch_size: state, action, reward, next_state, done = self.replay_buffer.sample(batch_size) reward = reward[:, np.newaxis] done = done[:, np.newaxis]
这段代码是在 SAC 算法的代码实现中,用于从经验池中采样一批经验数据。具体来说,代码中的第一行判断经验池中是否有足够的经验数据,如果有,则进入采样过程。
第二行代码使用经验池中的 sample() 方法来随机采样 batch_size 个经验数据,其中 state 表示当前状态,action 表示当前动作,reward 表示当前奖励,next_state 表示下一个状态,done 表示是否完成。
第三行代码将 reward 转换为列向量,即将每个样本的 reward 值从一维转换为二维,以便后续计算 Q 值和目标值。
第四行代码将 done 转换为列向量,即将每个样本的 done 值从一维转换为二维,以便后续计算目标值。
这段代码的作用是将经验池中的数据转换为神经网络所需要的形式,以便进行 Q 函数和策略函数的训练。具体来说,它将经验数据转换为一个 batch,其中包含了当前状态、动作、奖励、下一个状态和是否完成等信息,并将奖励和是否完成转换为列向量的形式,以便后续计算目标值和损失函数。
详细解释这段代码 def init(self, args, model, env, logger): self.args = args self.device = th.device( "cuda" if th.cuda.is_available() and self.args.cuda else "cpu" ) self.logger = logger self.episodic = self.args.episodic if self.args.target: target_net = model(self.args).to(self.device) self.behaviour_net = model(self.args, target_net).to(self.device) else: self.behaviour_net = model(self.args).to(self.device) if self.args.replay: if not self.episodic: self.replay_buffer = TransReplayBuffer( int(self.args.replay_buffer_size) ) else: self.replay_buffer = EpisodeReplayBuffer( int(self.args.replay_buffer_size) ) self.env = env self.policy_optimizer = optim.RMSprop( self.behaviour_net.policy_dicts.parameters(), lr=args.policy_lrate, alpha=0.99, eps=1e-5 ) self.value_optimizer = optim.RMSprop( self.behaviour_net.value_dicts.parameters(), lr=args.value_lrate, alpha=0.99, eps=1e-5 ) if self.args.mixer: self.mixer_optimizer = optim.RMSprop( self.behaviour_net.mixer.parameters(), lr=args.mixer_lrate, alpha=0.99, eps=1e-5 ) self.init_action = th.zeros(1, self.args.agent_num, self.args.action_dim).to(self.device) self.steps = 0 self.episodes = 0 self.entr = self.args.entr
这段代码是一个类的初始化方法,接收四个参数args、model、env和logger。首先,将args、logger存储在类的属性中;然后,根据是否使用cuda,设置device属性为"cuda"或"cpu";若args中有target,则创建一个target_net模型,并将其移动到device上,同时创建一个behaviour_net模型,并将其移动到device上;否则,直接创建behaviour_net模型,并将其移动到device上。若args中有replay,则根据是否使用episodic,创建一个TransReplayBuffer或EpisodeReplayBuffer缓冲区,大小为args.replay_buffer_size;同时,将env赋值给类的env属性。接着,使用optim.RMSprop创建policy_optimizer、value_optimizer和mixer_optimizer(若args中有mixer),并分别将behaviour_net模型的policy_dicts、value_dicts和mixer参数作为优化器的参数。最后,初始化一些其他属性,如init_action、steps、episodes和entr。
阅读全文