matlab牛顿法迭代法求方程x^3-x-1的根程序流程图怎么画
时间: 2024-06-09 07:09:53 浏览: 145
下面是使用 matlab 实现牛顿法和迭代法求解方程 x^3 - x - 1 的根的程序流程图:

具体实现的代码如下:
```matlab
% 牛顿法求解方程 x^3 - x - 1 = 0 的根
function x = newton(x0, f, df, tol, maxiter)
% x0: 初始点
% f: 函数句柄
% df: 导函数句柄
% tol: 容忍误差
% maxiter: 最大迭代次数
% 初始化
x = x0;
iter = 0;
% 迭代
while abs(f(x)) > tol && iter < maxiter
x = x - f(x) / df(x);
iter = iter + 1;
end
% 若超过最大迭代次数仍未达到容忍误差,则输出警告信息
if iter == maxiter && abs(f(x)) > tol
disp('Warning: maximum number of iterations reached.');
end
end
% 迭代法求解方程 x^3 - x - 1 = 0 的根
function x = iteration(x0, g, tol, maxiter)
% x0: 初始点
% g: 迭代函数句柄
% tol: 容忍误差
% maxiter: 最大迭代次数
% 初始化
x = x0;
iter = 0;
% 迭代
while abs(g(x) - x) > tol && iter < maxiter
x = g(x);
iter = iter + 1;
end
% 若超过最大迭代次数仍未达到容忍误差,则输出警告信息
if iter == maxiter && abs(g(x) - x) > tol
disp('Warning: maximum number of iterations reached.');
end
end
% 测试
f = @(x) x^3 - x - 1;
df = @(x) 3 * x^2 - 1;
g = @(x) (x^3 + 1) / 2;
x0 = 1;
tol = 1e-6;
maxiter = 100;
% 使用牛顿法求解
x1 = newton(x0, f, df, tol, maxiter);
fprintf('Using Newton method, the root of x^3 - x - 1 = 0 is: %f\n', x1);
% 使用迭代法求解
x2 = iteration(x0, g, tol, maxiter);
fprintf('Using iteration method, the root of x^3 - x - 1 = 0 is: %f\n', x2);
```
以上是 matlab 实现牛顿法和迭代法求解方程的程序流程及代码示例。
阅读全文
相关推荐

















