plate = self.extract_plate(src, rect) #plate是截取到的车牌图像 img2 = cv2.cvtColor(plate, cv2.COLOR_BGR2RGB) #进行色彩空间的转换 _image = QtGui.QImage(img2[:], img2.shape[1], img2.shape[0], plate.shape[1] * 3, QtGui.QImage.Format_RGB888) # pyqt5转换成自己能放的图片格式 jpg_out = QtGui.QPixmap(_image).scaled(self.label_3.width(), self.label_3.height()) # 设置图片大小 self.label_3.setPixmap(jpg_out) # 将截取到的车牌图像显示到GUI界面中 plate_res = self.plate_recognition(plate) #将识别结果存入列表 time_end = time.time() time_sum = time_end - time_start #计算检测时间 print('%.2f'% time_sum) self.label_8.setText('%.2f'%time_sum + 'S') #将检测时间显示到GUI界面中,对结果保留两位小数 plate_res = ''.join(str(i) for i in plate_res) #导出识别结果 self.label_2.setText(plate_res) #将识别结果在界面中显示

时间: 2024-02-14 18:07:10 浏览: 19
这段代码是一个Python函数,用于在GUI界面中显示车牌识别结果和检测时间。它首先从原始图像中提取车牌图像,然后将其转换为RGB格式的图像,并将其转换为Qt支持的QImage格式。接着,它将QImage转换为QPixmap,并设置其大小以适应GUI界面中的标签。然后,它使用"setPixmap"函数将图像显示到GUI界面中的标签。接下来,它调用车牌识别函数,将识别结果存储在一个列表中。然后,它计算车牌检测时间,并将其显示在GUI界面中的另一个标签上。最后,它将识别结果显示在界面中的标签上。
相关问题

逐行解释plate = self.extract_plate(src, rect) #plate是截取到的车牌图像 img2 = cv2.cvtColor(plate, cv2.COLOR_BGR2RGB) #进行色彩空间的转换 _image = QtGui.QImage(img2[:], img2.shape[1], img2.shape[0], plate.shape[1] * 3, QtGui.QImage.Format_RGB888) # pyqt5转换成自己能放的图片格式 jpg_out = QtGui.QPixmap(_image).scaled(self.label_3.width(), self.label_3.height()) # 设置图片大小 self.label_3.setPixmap(jpg_out) # 将截取到的车牌图像显示到GUI界面中 plate_res = self.plate_recognition(plate) #将识别结果存入列表 time_end = time.time() time_sum = time_end - time_start #计算检测时间 print('%.2f'% time_sum) self.label_8.setText('%.2f'%time_sum + 'S') #将检测时间显示到GUI界面中,对结果保留两位小数 plate_res = ''.join(str(i) for i in plate_res) #导出识别结果 self.label_19.setText(plate_res) #将识别结果在界面中显示

这段代码主要实现的是将从原始图像中截取到的车牌图像进行处理和显示,并对其进行车牌识别。具体解释如下: - plate = self.extract_plate(src, rect) #plate是截取到的车牌图像:将原始图像src中的车牌区域rect截取出来,存储到变量plate中。 - img2 = cv2.cvtColor(plate, cv2.COLOR_BGR2RGB) #进行色彩空间的转换:将BGR色彩空间转换成RGB色彩空间,存储到变量img2中。 - _image = QtGui.QImage(img2[:], img2.shape[1], img2.shape[0], plate.shape[1] * 3, QtGui.QImage.Format_RGB888) # pyqt5转换成自己能放的图片格式:将img2转换成QT可识别的图像格式,并存储到变量_image中。 - jpg_out = QtGui.QPixmap(_image).scaled(self.label_3.width(), self.label_3.height()) # 设置图片大小:将_image变量转换成QT可识别的图像,缩放到指定大小,并存储到变量jpg_out中。 - self.label_3.setPixmap(jpg_out) # 将截取到的车牌图像显示到GUI界面中:将处理后的车牌图像在GUI界面中显示。 - plate_res = self.plate_recognition(plate) #将识别结果存入列表:对截取到的车牌图像进行车牌识别,并将结果存储到变量plate_res中。 - time_end = time.time() #记录当前时间:记录当前时间,用于计算检测时间。 - time_sum = time_end - time_start #计算检测时间:计算车牌检测所用的时间。 - print('%.2f'% time_sum) #输出检测时间:在控制台输出车牌检测所用的时间,保留两位小数。 - self.label_8.setText('%.2f'%time_sum + 'S') #将检测时间显示到GUI界面中,对结果保留两位小数:将车牌检测所用的时间在GUI界面中显示,并保留两位小数。 - plate_res = ''.join(str(i) for i in plate_res) #导出识别结果:将车牌识别的结果plate_res转换成字符串格式,并存储到变量plate_res中。 - self.label_19.setText(plate_res) #将识别结果在界面中显示:将车牌识别的结果在GUI界面中显示。

def init(self,pos,groups,obstacle_sprites,create_attack,destroy_attack,create_magic): super().init(groups) self.image = pygame.image.load('../graphics/test/player.png').convert_alpha() self.rect = self.image.get_rect(topleft = pos) self.hitbox = self.rect.inflate(-6,HITBOX_OFFSET['player']) # graphics setup self.import_player_assets() self.status = 'down' # movement self.attacking = False self.attack_cooldown = 400 self.attack_time = None self.obstacle_sprites = obstacle_sprites # weapon self.create_attack = create_attack self.destroy_attack = destroy_attack self.weapon_index = 0 self.weapon = list(weapon_data.keys())[self.weapon_index] self.can_switch_weapon = True self.weapon_switch_time = None self.switch_duration_cooldown = 200 # magic self.create_magic = create_magic self.magic_index = 0 self.magic = list(magic_data.keys())[self.magic_index] self.can_switch_magic = True self.magic_switch_time = None # stats self.stats = {'health': 100,'energy':60,'attack': 10,'magic': 4,'speed': 5} self.max_stats = {'health': 300, 'energy': 140, 'attack': 20, 'magic' : 10, 'speed': 10} self.upgrade_cost = {'health': 100, 'energy': 100, 'attack': 100, 'magic' : 100, 'speed': 100} self.health = self.stats['health'] * 0.5 self.energy = self.stats['energy'] * 0.8 self.exp = 5000 self.speed = self.stats['speed'] # damage timer self.vulnerable = True self.hurt_time = None self.invulnerability_duration = 500 # import a sound self.weapon_attack_sound = pygame.mixer.Sound('../audio/sword.wav') self.weapon_attack_sound.set_volume(0.4)对上述代码进行注解

这段代码是一个Python中的类的初始化方法(即构造函数)。下面是对每一行代码的注释说明: ```python def __init__(self, pos, groups, obstacle_sprites, create_attack, destroy_attack, create_magic): super().__init__(groups) # 调用父类的构造函数 self.image = pygame.image.load('../graphics/test/player.png').convert_alpha() # 加载图像 self.rect = self.image.get_rect(topleft=pos) # 获取图像的矩形区域并设置位置 self.hitbox = self.rect.inflate(-6, HITBOX_OFFSET['player']) # 设置碰撞区域 self.import_player_assets() # 导入玩家角色的资源 self.status = 'down' # 设置状态为向下 self.attacking = False # 设置攻击状态为False self.attack_cooldown = 400 # 设置攻击冷却时间为400毫秒 self.attack_time = None # 初始化攻击时间为None self.obstacle_sprites = obstacle_sprites # 设置障碍物精灵组 self.create_attack = create_attack # 设置创建攻击的方法 self.destroy_attack = destroy_attack # 设置销毁攻击的方法 self.create_magic = create_magic # 设置创建魔法的方法 self.weapon_index = 0 # 初始化武器索引为0 self.weapon = list(weapon_data.keys())[self.weapon_index] # 获取武器名称 self.can_switch_weapon = True # 设置能否切换武器状态为True self.weapon_switch_time = None # 初始化切换武器时间为None self.switch_duration_cooldown = 200 # 设置切换武器的冷却时间为200毫秒 self.magic_index = 0 # 初始化魔法索引为0 self.magic = list(magic_data.keys())[self.magic_index] # 获取魔法名称 self.can_switch_magic = True # 设置能否切换魔法状态为True self.magic_switch_time = None # 初始化切换魔法时间为None self.stats = {'health': 100, 'energy': 60, 'attack': 10, 'magic': 4, 'speed': 5} # 初始化属性值 self.max_stats = {'health': 300, 'energy': 140, 'attack': 20, 'magic': 10, 'speed': 10} # 设置最大属性值 self.upgrade_cost = {'health': 100, 'energy': 100, 'attack': 100, 'magic': 100, 'speed': 100} # 设置升级属性所需成本 self.health = self.stats['health'] * 0.5 # 初始化生命值 self.energy = self.stats['energy'] * 0.8 # 初始化能量值 self.exp = 5000 # 初始化经验值 self.speed = self.stats['speed'] # 初始化速度值 self.vulnerable = True # 设置受伤状态为True self.hurt_time = None # 初始化受伤时间为None self.invulnerability_duration = 500 # 设置无敌时间为500毫秒 self.weapon_attack_sound = pygame.mixer.Sound('../audio/sword.wav') # 导入武器攻击音效 self.weapon_attack_sound.set_volume(0.4) # 设置音量为0.4 ``` 该类的实例化会在游戏中创建一个玩家对象,并包含了玩家的各项属性和方法。

相关推荐

import pygame import math from pygame.sprite import Sprite class Robot(Sprite): def __init__(self, screen): # initialize robot and its location 初始化机器人及其位置 self.screen = screen # load image and get rectangle 加载图像并获取矩形 self.image = pygame.image.load('images/robot.png').convert_alpha() self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() # put sweeper on the center of window 把扫地机器人放在界面中央 self.rect.center = self.screen_rect.center # 初始角度 self.angle = 0 self.moving_speed = [1, 1] self.moving_pos = [self.rect.centerx, self.rect.centery] self.moving_right = False self.moving_left = False def blitme(self): # buld the sweeper at the specific location 把扫地机器人放在特定的位置 self.screen.blit(self.image, self.rect) def update(self, new_robot): # 旋转图片(注意:这里要搞一个新变量,存储旋转后的图片) new_robot.image = pygame.transform.rotate(self.image, self.angle) # 校正旋转图片的中心点 new_robot.rect = new_robot.image.get_rect(center=self.rect.center) self.moving_pos[0] -= math.sin(self.angle / 180 * math.pi) * self.moving_speed[0] self.moving_pos[1] -= math.cos(self.angle / 180 * math.pi) * self.moving_speed[1] self.rect.centerx = self.moving_pos[0] self.rect.centery = self.moving_pos[1] # 右转的处理 if self.moving_right: self.angle -= 1 if self.angle < -180: self.angle = 360 + self.angle # 左转的处理 if self.moving_left: self.angle += 1 if self.angle > 180: self.angle = self.angle - 360 # 上下边界反弹的处理 if (self.rect.top <= 0 and -90 < self.angle < 90) or ( self.rect.bottom >= self.screen_rect.height and (self.angle > 90 or self.angle < -90)): self.angle = 180 - self.angle # 左右边界反弹的处理 if (self.rect.left <= 0 and 0 < self.angle < 180) or ( self.rect.right >= self.screen_rect.width and (self.angle > 180 or self.angle < 0)): self.angle = - self.angle

最新推荐

recommend-type

ASP.NET技术在网站开发设计中的研究与开发(论文+源代码+开题报告)【ASP】.zip

ASP.NET技术在网站开发设计中的研究与开发(论文+源代码+开题报告)【ASP】
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化

![MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化](https://ww2.mathworks.cn/products/database/_jcr_content/mainParsys/band_1749659463_copy/mainParsys/columns_copy/6d5289a2-72ce-42a8-a475-d130cbebee2e/image_copy_2009912310.adapt.full.medium.jpg/1709291769739.jpg) # 1. MATLAB结构体与数据库交互概述** MATLAB结构体与数据库交互是一种强大的
recommend-type

Link your Unity

project to C# script in Visual Studio. Can you provide me with some guidance on this? Yes, I can definitely help you with that! To link your Unity project to C# script in Visual Studio, you first need to make sure that you have both Unity and Visual Studio installed on your computer. Then, you can
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。