// 更新距离数组和 visited 数组 while (minIt != graph.points.end()) { int curr = minIt->first; visited[curr] = true; for (unordered_map<int, int>::iterator it = graph.edges[curr].begin(); it != graph.edges[curr].end(); it++) { int neighbor = it->first; int weight = it->second; if (!visited[neighbor] && dist[curr] + weight < dist[neighbor]) { dist[neighbor] = dist[curr] + weight; } } // 找到距离起点最近的未访问点 minIt = graph.points.end(); for (unordered_map<int, Point>::iterator it = graph.points.begin(); it != graph.points.end(); it++) { if (!visited[it->first] && (minIt == graph.points.end() || dist[it->first] < dist[minIt->first])) { minIt = it; } } }

时间: 2024-02-15 14:27:47 浏览: 23
这段代码是 Dijkstra 算法的实现,用于寻找图中两点之间的最短路径。其中,dist 数组用于存储起点到各点的最短距离,visited 数组用于记录各点是否被访问过。该算法的基本思想是从起点开始,每次选择距离起点最近的未访问点作为下一个当前点,然后更新与该点相邻的点的最短距离。不断重复这个过程,直到所有点都被访问过为止。 具体实现中,首先将起点的距离设为 0,其余点的距离设为无穷大(这里用 INT_MAX 表示)。然后选择距离起点最近的未访问点作为当前点,更新其相邻点的距离。接着再从所有未访问的点中选择距离起点最近的点作为下一个当前点,重复上述过程,直到所有点都被访问过为止。 具体实现中,第一次循环时,先找到距离起点最近的未访问点,将其设为当前点,并将其距离设为 dist[curr]。然后遍历当前点的相邻点,如果该相邻点未被访问过且通过当前点到该相邻点的距离比原来的距离更短,则更新其距离。接着再次找到距离起点最近的未访问点作为当前点,重复上述过程,直到所有点都被访问过为止。
相关问题

void DFSTraverse(Graph graph) { for (int i = 1; i <= graph->vexnum; i++) visited[i] = false; for (int i = 1; i <= graph->vexnum; i++) { if (!visited[i]) DFS(graph, i); } } void DFS(Graph graph, int v) { visited[v] = true; cout << graph->list[v].data << " "; Node* header = graph->list[v].head; while (header) { if (!visited[header->vex]) { DFS(graph, header->vex); } header = header->next; } } void BFSTraverse(Graph graph) { queue<int> MyQueue; for (int i = 1; i <= graph->vexnum; i++) visited[i] = false; for (int i = 1; i <= graph->vexnum; i++) { if (!visited[i]) { visited[i] = true; cout << graph->list[i].data << " "; MyQueue.push(i); while (!MyQueue.empty()) { int front = MyQueue.front(); MyQueue.pop(); Node* header = graph->list[front].head; while (header) { if (!visited[header->vex]) { visited[header->vex] = true; cout << graph->list[header->vex].data << " "; MyQueue.push(header->vex); } header = header->next; } } } } } void printGraph(Graph graph) { int** arr = new int* [graph->vexnum + 1]; for (int i = 1; i <= graph->vexnum; i++) { arr[i] = new int[graph->vexnum + 1]; } for (int i = 1; i <= graph->vexnum; i++) { for (int j = 1; j <= graph->vexnum; j++) { arr[i][j] = 0; } } for (int i = 1; i <= graph->vexnum; i++) { Node* header = graph->list[i].head; while (header) { arr[i][header->vex] = header->weight; header = header->next; } } for (int i = 1; i <= graph->vexnum; i++) { for (int j = 1; j <= graph->vexnum; j++) { cout << arr[i][j] << " "; } cout << endl; } }代码讲解

DFSTraverse函数和DFS函数实现了图的深度优先遍历。首先将visited数组初始化为false,然后对每个顶点进行深度优先遍历。在DFS函数中,首先将当前顶点标记为已访问,并输出其数据。然后遍历当前顶点的邻接表,对于每个未被访问过的邻接点,递归调用DFS函数进行遍历。 BFSTraverse函数实现了图的广度优先遍历。同样先将visited数组初始化为false,然后对每个未被访问过的顶点进行广度优先遍历。在遍历每个顶点时,将其标记为已访问,输出其数据,并将其加入队列中。然后对队列中的元素依次出队,并遍历其邻接表,对于每个未被访问过的邻接点,将其标记为已访问,输出其数据,并将其加入队列中。 printGraph函数用于输出图的邻接矩阵。首先动态创建一个二维数组arr来存储邻接矩阵。然后将其初始化为0。接着遍历每个顶点的邻接表,将对应的邻接矩阵元素赋值为边的权重。最后输出邻接矩阵。

void eDFS(int v, int level){ struct edge *p; if(v == V1) {printPath(level); return;} for(p=Graph[v].link; p!= NULL; p=p->next) if( !Visited[p->adjvex]){ Paths[level] = p->eno; Visited[p->adjvex] = 1; eDFS(p->adjvex,level+1); Visited[p->adjvex] = 0; } }

这段代码实现了一个无向图的欧拉路径搜索,其中参数v表示搜索起点,level表示当前搜索的深度。函数eDFS中使用了深度优先搜索算法,遍历图中的所有可能路径,并记录已经访问过的节点。 具体实现过程如下: 1. 首先判断起点v是否为欧拉路径的起点V1,如果是则输出当前的路径(即Paths数组中的元素),并返回。 2. 遍历起点v的所有邻居节点,对于每个未被访问过的邻居节点p->adjvex,进行以下操作: - 将边p->eno的编号记录到Paths数组的第level个位置上。 - 将邻居节点p->adjvex标记为已访问。 - 递归调用eDFS函数,以邻居节点p->adjvex作为新的起点,继续搜索。 - 在递归调用结束后,将邻居节点p->adjvex标记为未访问,以便后续搜索。 3. 当所有邻居节点都被遍历完后,函数返回。 下面是这段代码的完整实现: ```c #define MAX_VERTICES 100 #define MAX_EDGES 1000 struct edge { int adjvex; int eno; struct edge *next; }; struct graph { int nvertices; int nedges; struct edge *link[MAX_VERTICES]; } Graph; int Visited[MAX_VERTICES]; int Paths[MAX_EDGES]; int V1; void printPath(int level) { int i; for (i = 0; i < level; i++) { printf("%d ", Paths[i]); } printf("\n"); } void eDFS(int v, int level) { struct edge *p; if (v == V1) { printPath(level); return; } for (p = Graph[v].link; p != NULL; p = p->next) { if (!Visited[p->adjvex]) { Paths[level] = p->eno; Visited[p->adjvex] = 1; eDFS(p->adjvex, level + 1); Visited[p->adjvex] = 0; } } } int main() { int i, V2, E, v, w; struct edge *p; scanf("%d %d", &V1, &E); Graph.nvertices = V1; Graph.nedges = 0; for (i = 0; i < V1; i++) { Graph.link[i] = NULL; } for (i = 0; i < E; i++) { scanf("%d %d", &v, &w); p = (struct edge *)malloc(sizeof(struct edge)); p->adjvex = w; p->eno = i + 1; p->next = Graph.link[v]; Graph.link[v] = p; p = (struct edge *)malloc(sizeof(struct edge)); p->adjvex = v; p->eno = i + 1; p->next = Graph.link[w]; Graph.link[w] = p; Graph.nedges++; } Visited[V1] = 1; eDFS(0, 0); return 0; } ```

相关推荐

import java.util.*; public class 1450 { static int N, M; static int[] dist; static boolean[] visited; static List<Edge>[] graph; public static void main(String[] args) { Scanner sc = new Scanner(System.in); N = sc.nextInt(); M = sc.nextInt(); dist = new int[N + 1]; visited = new boolean[N + 1]; graph = new List[N + 1]; for (int i = 1; i <= N; i++) { graph[i] = new ArrayList<>(); } for (int i = 0; i < M; i++) { int a = sc.nextInt(); int b = sc.nextInt(); int c = sc.nextInt(); graph[a].add(new Edge(b, c)); graph[b].add(new Edge(a, c)); } int start = sc.nextInt(); int end = sc.nextInt(); int res = dijkstra(start, end); if (res == Integer.MAX_VALUE) { System.out.println("No solution"); } else { System.out.println(res); } } private static int dijkstra(int start, int end) { Arrays.fill(dist, Integer.MAX_VALUE); dist[start] = 0; PriorityQueue<Node> pq = new PriorityQueue<>(); pq.offer(new Node(start, 0)); while (!pq.isEmpty()) { Node curr = pq.poll(); int u = curr.vertex; if (visited[u]) { continue; } visited[u] = true; if (u == end) { return dist[end]; } for (Edge edge : graph[u]) { int v = edge.to; int w = edge.weight; if (!visited[v] && dist[u] != Integer.MAX_VALUE && dist[u] + w < dist[v]) { dist[v] = dist[u] + w; pq.offer(new Node(v, dist[v])); } } } return Integer.MAX_VALUE; } } class Node implements Comparable<Node> { int vertex; int dist; public Node(int vertex, int dist) { this.vertex = vertex; this.dist = dist; } @Override public int compareTo(Node o) { return this.dist - o.dist; } } class Edge { int to; int weight; public Edge(int to, int weight) { this.to = to; this.weight = weight; } }优化该代码

#include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXV 100 // 最大顶点数 #define INF 0x3f3f3f // 无穷大 char vertex[MAXV][20]; // 顶点名称 int matrix[MAXV][MAXV]; // 邻接矩阵 int visited[MAXV]; // 标记数组,用于深度遍历 int queue[MAXV]; // 队列,用于广度遍历 int front = 0; // 队首指针 int rear = 0; // 队尾指针 struct Edge { int start; // 起点在vertex数组中的下标 int end; // 终点在vertex数组中的下标 int weight; // 权值 }; void createGraph(int m, int n) { int i,j; // 输入顶点名称 for (i = 0; i < m; i++) { scanf("%s", vertex[i]); } // 初始化邻接矩阵 memset(matrix, INF, sizeof(matrix)); // 输入边的信息 for (i = 0; i < n; i++) { char start[20], end[20]; int weight; scanf("%s %s %d", start, end, &weight); int u = -1, v = -1; for (j = 0; j < m; j++) { if (strcmp(start, vertex[j]) == 0) { u = j; } if (strcmp(end, vertex[j]) == 0) { v = j; } if (u != -1 && v != -1) { break; } } matrix[u][v] = matrix[v][u] = weight; } } void dfs(int u) { int v; visited[u] = 1; printf("%s ", vertex[u]); for (v = 0; v < MAXV; v++) { if (matrix[u][v] != INF && visited[v] == 0) { dfs(v); } } } void bfs(int u, int m) { int v,w; printf("%s ", vertex[u]); visited[u] = 1; queue[rear++] = u; while (front != rear) { v = queue[front++]; for (w = 0; w < m; w++) { if (matrix[v][w] != INF && visited[w] == 0) { printf("%s ", vertex[w]); visited[w] = 1; queue[rear++] = w; } } } } int main() { int m, n,i; scanf("%d %d", &m, &n); createGraph(m, n); memset(visited, 0, sizeof(visited)); char start[20]; scanf("%s", start); int u = -1; for (i = 0; i < m; i++) { if (strcmp(start, vertex[i]) == 0) { u = i; break; } } dfs(u); printf("\n"); memset(visited, 0, sizeof(visited)); front = rear = 0; bfs(u, m); printf("\n"); return 0; }看看这段代码有没有问题,并给出修改后的代码

#include<iostream> #include<queue> #include<vector> using namespace std; // 定义图的邻接表结构 struct edge { int dest; edge* next; }; struct vertex { edge* head; }; // 图类 class Graph { private: int V; // 顶点数 vertex* adj; // 邻接表 public: Graph(int V) { this->V = V; adj = new vertex[V]; for (int i = 0; i < V; ++i) { adj[i].head = nullptr; } } // 添加边 void addEdge(int src, int dest) { edge* e = new edge; e->dest = dest; e->next = adj[src].head; adj[src].head = e; } // 深度优先遍历 void DFS(int v, bool* visited) { visited[v] = true; cout << v << " "; edge* e = adj[v].head; while (e != nullptr) { if (!visited[e->dest]) { DFS(e->dest, visited); } e = e->next; } } // 广度优先遍历 void BFS(int v, bool* visited) { queue<int> q; visited[v] = true; q.push(v); while (!q.empty()) { int u = q.front(); q.pop(); cout << u << " "; edge* e = adj[u].head; while (e != nullptr) { if (!visited[e->dest]) { visited[e->dest] = true; q.push(e->dest); } e = e->next; } } } }; int main() { int V, E; cout << "请输入顶点数和边数:" << endl; cin >> V >> E; Graph g(V); cout << "请输入每条边的起点和终点:" << endl; for (int i = 0; i < E; ++i) { int src, dest; cin >> src >> dest; g.addEdge(src, dest); } // 深度优先遍历 cout << "深度优先遍历结果为:" << endl; bool* visited = new bool[V]; for (int i = 0; i < V; ++i) { visited[i] = false; } for (int i = 0; i < V; ++i) { if (!visited[i]) { g.DFS(i, visited); } } cout << endl; // 广度优先遍历 cout << "广度优先遍历结果为:" << endl; for (int i = 0; i < V; ++i) { visited[i] = false; } for (int i = 0; i < V; ++i) { if (!visited[i]) { g.BFS(i, visited); } } cout << endl; return 0; }这段代码从输入数字修改为输入为字母

最新推荐

recommend-type

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rarJava开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar
recommend-type

基于android的公司员工考勤综合信息平台源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、