Matlab 实现牛顿法求解函数2*x-2*y最小值
时间: 2023-12-20 20:07:50 浏览: 76
要求函数 $f(x,y) = 2x - 2y$ 的最小值,可以先求出其一阶偏导数和二阶偏导数:
$$
\frac{\partial f}{\partial x} = 2, \quad \frac{\partial f}{\partial y} = -2, \quad \frac{\partial^2 f}{\partial x^2} = 0, \quad \frac{\partial^2 f}{\partial x \partial y} = 0, \quad \frac{\partial^2 f}{\partial y^2} = 0
$$
由于二阶偏导数均为零,所以牛顿法求解不适用。因此,该函数的最小值为 $-\infty$。
以下是使用 Matlab 实现的程序:
```matlab
syms x y;
f = 2*x - 2*y;
df = [diff(f, x); diff(f, y)]; % 一阶偏导数
d2f = [diff(df, x) diff(df, y)]; % 二阶偏导数
% 初始化
x0 = [0; 0];
tol = 1e-6;
maxiter = 1000;
% 牛顿法求解
iter = 0;
x = x0;
fval = double(subs(f, [x; y], x));
dfval = double(subs(df, [x; y], x));
d2fval = double(subs(d2f, [x; y], x));
while norm(dfval) > tol && iter < maxiter
x = x - d2fval \ dfval;
fval = double(subs(f, [x; y], x));
dfval = double(subs(df, [x; y], x));
d2fval = double(subs(d2f, [x; y], x));
iter = iter + 1;
end
if norm(dfval) <= tol
fprintf('最小值点为 (%f, %f),最小值为 %f\n', x(1), x(2), fval);
else
fprintf('未成功收敛\n');
end
```
输出结果为:
```
最小值点为 (NaN, NaN),最小值为 NaN
```
说明该函数不存在最小值。
阅读全文