void dijkstra(int begin,int nodes[],int Llen,int Clen) { int num; num = Llen*Clen; int temp; int min; pre[begin] = 0; for(int i=0;i<(Llen*Clen);i++) {//初始化dist、visited、pre数组 visited[i] = 0; if(i==begin) { dist[i] = 0; } else if (arcs[begin][i]==1) { dist[i] = 1; pre[i] = begin; } else { dist[i] = inf; pre[i] = -1; } } visited[begin] = 1; for(int i=0;i<num;i++) { temp = begin; min = inf; for(int j=0;j<num;j++) {//找到目前尚未访问过的最近的点,并从该点出发向后查找. if(!visited[j]&&(dist[j]!=0)&&(dist[j]<min)) { min = dist[j]; temp = j; } } if(temp==begin) continue; visited[temp] = 1; for(int k=0; k<num; k++) { if(visited[k] == 0 && arcs[temp][k]==1) { if(dist[temp] + arcs[temp][k] < dist[k]){ dist[k] = dist[temp] + arcs[temp][k]; pre[k] = temp; } } } } }

时间: 2024-01-22 19:02:07 浏览: 22
这是一个 Dijkstra 算法的实现,用于求解给定有向加权图中从起点 begin 到其它节点的最短路径。 在该算法中,dist 数组存储了起点 begin 到各个节点的最短路径长度,pre 数组记录了从起点 begin 到各个节点的最短路径上该节点的前一个节点。visited 数组用于判断该节点是否已被访问过。 该算法的主要思想是不断找到当前尚未访问过的距离起点最近的节点,然后从该节点出发更新其它节点的最短路径。 在更新时,如果从当前节点出发到目标节点的距离比之前记录的最短路径更短,则更新该节点的最短路径长度和前一个节点。经过若干次迭代后,可以得到起点 begin 到其它节点的最短路径长度和路径信息。 需要注意的是,在该实现中,arcs 数组表示图中各个节点之间的连通情况和边权值,inf 表示一个极大值,用于初始化 dist 数组中起点之外的节点的最短路径长度。
相关问题

用C语言补完代码void Dijkstra(MGraph g,int v) { //求从v到其他顶点的最短路径 /********** Begin **********/ /********** End **********/ }

以下是用C语言补完代码的示例: ```c void Dijkstra(MGraph g, int v) { //求从v到其他顶点的最短路径 int visited[MAXSIZE]; // 记录顶点是否被访问过 int dist[MAXSIZE]; // 记录从v到各个顶点的最短距离 int path[MAXSIZE]; // 记录最短路径的前驱顶点 // 初始化visited、dist和path数组 for (int i = 0; i < g.numVertexes; i++) { visited[i] = 0; // 未访问过 dist[i] = g.arc[v][i]; // 初始化最短距离为v到各个顶点的直接距离 if (dist[i] < INFINITY) path[i] = v; // 如果v和i之间有直接路径,则将v作为i的前驱顶点 else path[i] = -1; // 如果v和i之间没有直接路径,则将-1作为i的前驱顶点 } visited[v] = 1; // 将v标记为已访问过 // 开始迭代 for (int i = 1; i < g.numVertexes; i++) { int min = INFINITY; // 记录当前最小距离 int u = v; // 记录当前最小距离对应的顶点 // 找到当前未访问过的顶点中距离v最近的顶点u for (int j = 0; j < g.numVertexes; j++) { if (!visited[j] && dist[j] < min) { min = dist[j]; u = j; } } visited[u] = 1; // 将u标记为已访问过 // 更新从v到其他顶点的最短距离和前驱顶点 for (int j = 0; j < g.numVertexes; j++) { if (!visited[j] && g.arc[u][j] < INFINITY && dist[u] + g.arc[u][j] < dist[j]) { dist[j] = dist[u] + g.arc[u][j]; path[j] = u; } } } // 输出最短路径和距离 for (int i = 0; i < g.numVertexes; i++) { if (i != v) { printf("从顶点%d到顶点%d的最短路径为:", v, i); printf("%d", i); int p = path[i]; while (p != v) { printf(" <- %d", p); p = path[p]; } printf(" <- %d", v); printf(",距离为:%d\n", dist[i]); } } } ```

void ShortestPath_Dijkstra(MGraph G, int v0, Patharc path, ShortPathTable dist)

这段代码定义了一个名为ShortestPath_Dijkstra的函数,用于求解带权有向图中单源最短路径问题,其中: - 参数G表示输入的图结构,包括顶点数和边的权值信息; - 参数v0表示起始点的编号; - 参数path表示输出的最短路径数组,记录从起始点到每个顶点的路径上的最后一个中间顶点; - 参数dist表示输出的最短距离数组,记录从起始点到每个顶点的最短路径长度。 该函数的具体实现使用了Dijkstra算法,通过调用dist和path数组的初始化、更新等操作,逐步求解从起始点到所有其他顶点的最短路径和距离信息。 该函数可以用于求解各种应用场景中的最短路径问题,例如路线规划、网络优化等。

相关推荐

#ifndef FUNC_H_INCLUDED #define FUNC_H_INCLUDED #define MaxLNum 110 #define MaxCNum 110 #define MaxSize 10100 #define inf 10000 extern int arcs[MaxSize][MaxSize]; extern int s_nodes[MaxSize]; extern int g_nodes[MaxSize]; extern int dist[MaxSize]; extern int visited[MaxSize]; extern int pre[MaxSize]; extern int s_path[MaxSize][MaxSize]; extern int goal[MaxSize][2]; extern int s_vital[MaxSize][2]; //定义机器人(结构体)。 struct Robot{ int Pos[2]; //当前位置 char CTYPE; //当前的字符类型 struct ArEle{ char CType; int flag; }Around[8]; //周围结点的字符类型及其标记(从North开始,沿顺时针排列) }; typedef struct QNode* Queue; typedef struct Robot* PtrRt; typedef struct Node* PtrToNode; struct Node{ //队列中的结点 PtrRt Rt; PtrToNode Next; }; struct QNode { PtrToNode Front, Rear; // 队列的头、尾指针 }; Queue CreateQueue(); Queue AddQ( Queue Q, PtrRt Rt ); int IsEmpty( Queue Q ); PtrRt DeleteQ( Queue Q ); int** around(int pos[2]); int Judge(char c); void Record(PtrRt Rt,Queue Q,char expor[][MaxCNum]); PtrRt CreateRt(int x,int y,char store[][MaxCNum],int Llen,int Clen); void save_path(PtrRt Rt_1,PtrRt Rt_2,int Clen); PtrRt move(PtrRt Rt,int pos[2],char store[][MaxCNum],int Llen,int Clen); void BFS(PtrRt Rt,Queue Q,char store[][MaxCNum],char expor[][MaxCNum],int Llen,int Clen); void print_path(int path[],int u, int v,int Clen); void dijkstra(int begin,int nodes[],int Llen,int Clen); void Nicolas(char store[][MaxCNum],char expor[][MaxCNum],int Llen,int Clen); #endif // FUNC_H_INCLUDED解释代码

最新推荐

recommend-type

python实现dijkstra最短路由算法

Dijkstra算法是图论中的一个重要算法,用于寻找有向图中单源最短路径。它由荷兰计算机科学家艾兹格·迪科斯彻在1959年提出,主要用于解决从一个顶点到其他所有顶点的最短路径问题。在Python中实现Dijkstra算法,我们...
recommend-type

Dijkstra算法最短路径的C++实现与输出路径

"Dijkstra算法最短路径的C++实现与输出路径" Dijkstra算法是解决单源最短路径问题的经典算法, 由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。该算法可以解决从某个源点到其他所有顶点的最短路径问题。 ...
recommend-type

Python3 A*寻路算法实现方式

它结合了Dijkstra算法的最短路径特性与优先队列的效率,通过引入启发式函数来指导搜索过程,使得路径查找更加智能且节省计算资源。 在Python3中实现A*寻路算法,我们需要以下几个关键组件: 1. **地图表示**:地图...
recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依