img = img.transpose((2, 0, 1)) axes don't match array
时间: 2024-06-02 16:10:16 浏览: 122
这个错误通常表示你正在尝试转置一个多维数组,但是转置后的轴的数量不匹配原始数组。在这个特定的例子中,你可能正在尝试将一个形状为 (height, width, channels) 的图像数组转置为形状为 (channels, height, width) 的数组。确保在转置之前检查数组的形状,并检查转置后的轴是否与你的预期相符。你还可以尝试使用`np.moveaxis`函数来移动轴,而不是简单地使用`transpose`。
相关问题
elif img1.ndim == 3: img1 = np.transpose(img1, (2, 0, 1)) img2 = np.transpose(img2, (2, 0, 1)) img1 = torch.from_numpy(img1).float() img2 = torch.from_numpy(img2).float() input_var = torch.cat([img1, img2]).unsqueeze(0)
这段代码是对图像进行预处理的步骤。首先,如果图像`img1`是三维的,即具有通道维度,则进行一些维度变换操作。
首先,使用`np.transpose`函数将图像的维度重新排列为(2, 0, 1)。这个操作的目的是将通道维度放在最前面,方便后续处理。
然后,对另一个图像`img2`也进行相同的维度变换操作。
接下来,使用`torch.from_numpy`将`img1`和`img2`转换为PyTorch的张量,并将数据类型设置为float。
最后,使用`torch.cat`函数将两个图像的张量按照通道维度进行拼接,得到一个新的张量。最后,使用`unsqueeze(0)`函数在最前面添加一个维度,得到输入变量`input_var`。这个操作可能是为了符合模型对输入数据的要求,例如需要一个batch维度。
总而言之,这段代码是将两个图像进行预处理,并将它们拼接成一个输入变量`input_var`,供后续的模型使用。
def image_processing(img,device): img = cv2.resize(img, (168,48)) img = np.reshape(img, (48, 168, 3)) # normalize img = img.astype(np.float32) img = (img / 255. - mean_value) / std_value img = img.transpose([2, 0, 1]) img = torch.from_numpy(img) img = img.to(device) img = img.view(1, *img.size()) return img
这段代码是图像处理的函数,它实现的功能是将原始图像进行大小重置、归一化处理和转换成 PyTorch 的张量格式。具体来说,该函数实现了以下几个步骤:
1. 使用 OpenCV 库中的 cv2.resize() 函数将原始图像重置为大小为 (168, 48) 的图像。
2. 将图像的像素值从 [0, 255] 范围归一化到 [-1, 1] 范围,以便于神经网络的处理。这里使用了预先计算好的均值和标准差值进行归一化,mean_value 和 std_value 分别代表均值和标准差。
3. 将图像的维度顺序从 (48, 168, 3) 转换为 (3, 48, 168) 的格式,以符合 PyTorch 的输入格式要求。
4. 将图像转换成 PyTorch 的张量格式,并将其移动到指定的设备上(例如 CPU 或 GPU)。
5. 将图像的维度扩展一维,以符合神经网络的输入要求。
最终,该函数返回处理后的图像张量。
阅读全文