matlab画z=sqrt (x^2-y^2)
时间: 2023-11-13 15:00:25 浏览: 94
你可以使用MATLAB中的`ezsurf`函数来画三维曲面。以下是一个简单的例子,展示如何绘制 $z=\sqrt{x^2-y^2}$:
```
% 定义 x 和 y 的范围
x = linspace(-5, 5, 100);
y = linspace(-5, 5, 100);
% 创建 x-y 网格
[X, Y] = meshgrid(x, y);
% 计算 z 值
Z = sqrt(X.^2 - Y.^2);
% 绘制曲面
ezsurf(Z);
```
上面的代码将创建一个 x-y 平面的网格,并计算每个点的 z 值。然后使用 `ezsurf` 函数将这些点绘制成一个三维曲面。你可以通过调整 `linspace` 函数中的参数来更改 x 和 y 的范围,并通过调整 `Z` 公式来更改绘制的曲面。
相关问题
用MATLAB画出z^2=x^2-y^2的图形
可以通过绘制曲面和曲线来画出该方程的图形。
首先,我们可以通过网格点来生成x、y和z坐标。具体步骤如下:
```matlab
% 设置x和y的范围
x = linspace(-5,5,50);
y = linspace(-5,5,50);
% 创建网格点
[X,Y] = meshgrid(x,y);
% 计算z坐标
Z = sqrt(X.^2 - Y.^2);
```
接下来,我们可以使用surf函数绘制曲面:
```matlab
% 绘制曲面
surf(X,Y,Z)
hold on
surf(X,Y,-Z)
```
最后,我们可以使用contour函数绘制曲线:
```matlab
% 绘制曲线
contour(X,Y,Z,[0 0],'k','LineWidth',2)
contour(X,Y,-Z,[0 0],'k','LineWidth',2)
```
完整代码如下:
```matlab
% 设置x和y的范围
x = linspace(-5,5,50);
y = linspace(-5,5,50);
% 创建网格点
[X,Y] = meshgrid(x,y);
% 计算z坐标
Z = sqrt(X.^2 - Y.^2);
% 绘制曲面
surf(X,Y,Z)
hold on
surf(X,Y,-Z)
% 绘制曲线
contour(X,Y,Z,[0 0],'k','LineWidth',2)
contour(X,Y,-Z,[0 0],'k','LineWidth',2)
% 设置图形属性
axis equal
xlabel('x')
ylabel('y')
zlabel('z')
title('z^2 = x^2 - y^2')
```
运行代码后,可以得到如下图形:

MATLAB找出10=sqrt((x-y)^2+(y-z)^2+(z-x)^2)与x+y+z=0的所有交点,并绘制出三维图
好的,我们可以使用MATLAB的fsolve函数来解决这个方程组。以下是完整的MATLAB代码:
```
% 定义匿名函数
fun = @(x) [10 - sqrt((x(1)-x(2))^2 + (x(2)-x(3))^2 + (x(3)-x(1))^2); x(1) + x(2) + x(3)];
% 给定初始值
x0 = [0, 0, 0];
% 解决方程组
sol = fsolve(fun, x0);
% 输出解
disp(sol);
% 绘制图形
figure;
plot3(sol(1), sol(2), sol(3), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');
xlabel('x');
ylabel('y');
zlabel('z');
title('Intersection of Equations');
grid on;
```
这将找到方程组的交点,并在三维图形中绘制出来。注意,由于方程组具有对称性,因此可能有多个解。你可以使用不同的初始值来找到其他解。
阅读全文
相关推荐

















