基于链表的两个一元多项式的基本运算 数据
时间: 2024-06-02 20:12:38 浏览: 145
一元多项式是指只有一个未知数的多项式,通常表示为:
f(x) = a0 + a1x + a2x^2 + ... + anxn
其中,a0, a1, a2, ..., an 是实数系数,n 是多项式的阶数。为了进行多项式的基本运算,我们可以使用链表来存储多项式的各项系数。每个链表节点都包含一个系数和一个指针,指向下一个节点。
下面介绍两个一元多项式的基本运算:
1. 多项式的加法
假设有两个多项式 f(x) 和 g(x),它们的阶数分别为 m 和 n。我们可以用两个链表分别存储它们的系数,然后对两个链表进行遍历,将相同阶数的系数相加,得到新的多项式 h(x) 的系数。如果其中一个多项式的阶数比另一个小,则将较小多项式剩余的项直接加到 h(x) 中。最后得到的 h(x) 就是 f(x) 和 g(x) 的和。
2. 多项式的乘法
假设有两个多项式 f(x) 和 g(x),它们的阶数分别为 m 和 n。我们可以用两个链表分别存储它们的系数,然后对两个链表进行遍历,将每一项的系数相乘,得到新的多项式 h(x) 的系数。具体地,假设 f(x) 的第 i 项系数为 ai,g(x) 的第 j 项系数为 bj,则 h(x) 的第 i+j 项系数为 ai*bj。最后得到的 h(x) 就是 f(x) 和 g(x) 的积。注意,由于乘法会使得多项式的阶数增加,因此在计算 h(x) 的系数时需要动态创建新的节点,并将其插入到链表中。
相关问题
基于链表的两个一元多项式的基本运算 数据结构
基于链表的一元多项式可以用一个链表来表示,每个节点存储一个项的系数和指数。对于两个多项式的基本运算,可以分别考虑它们的加法、减法、乘法和求导。
1. 加法和减法:对于两个多项式的加法和减法,可以采用类似合并排序的思路,从链表的头部开始比较两个多项式的指数,根据大小关系执行加法、减法或者将某个多项式的节点加入到新的链表中。
2. 乘法:对于两个多项式的乘法,可以采用类似于矩阵乘法的思路,遍历其中一个多项式的每一个节点,将其与另一个多项式的每一个节点相乘,并将结果加入到一个新的链表中。需要注意的是,在相乘的过程中可能会出现指数相同的项,需要将它们的系数相加。
3. 求导:对于一个多项式的求导,可以直接遍历链表,对于每一个节点执行求导操作,即将指数减一,同时将系数乘以指数。
总之,基于链表的一元多项式的基本运算需要考虑到节点的插入、删除、合并等操作,需要注意链表的头节点、尾节点以及空链表的情况。
基于链表的两个一元多项式的基本运算
链表可以用来表示一元多项式,每个节点代表一个项,包含系数和指数。基本运算包括加法、减法和乘法。
加法和减法的思路都很类似,都是将链表中对应指数的项相加或相减。具体实现时,可以先将两个链表按指数从小到大排序,然后同时遍历两个链表,按照指数大小比较,将对应项相加或相减,生成新的节点插入结果链表中。如果某一链表已经遍历结束,则将另一链表的剩余项直接插入结果链表中。
乘法的实现稍微复杂一些。可以采用两个循环嵌套的方式,分别遍历两个链表,将每个项相乘得到新的项,并将新的项插入结果链表中。具体实现时,需要注意项之间的系数和指数相乘的规律,以及结果链表中相同指数的项需要合并的问题。可以使用一个哈希表来记录每个指数在结果链表中的位置,然后在插入新项时,根据指数查找哈希表,判断是否有相同指数的项存在,如果存在,则将系数相加,否则新建一个节点并插入结果链表中,并更新哈希表中的指数位置信息。
下面是 C++ 实现示例:
```cpp
#include <iostream>
#include <unordered_map>
using namespace std;
struct Node {
int coef;
int exp;
Node *next;
Node(int coef_, int exp_) : coef(coef_), exp(exp_), next(nullptr) {}
};
void insert(Node *&head, int coef, int exp) {
Node *node = new Node(coef, exp);
if (head == nullptr || head->exp < exp) {
node->next = head;
head = node;
} else {
Node *prev = nullptr, *curr = head;
while (curr != nullptr && curr->exp > exp) {
prev = curr;
curr = curr->next;
}
if (curr != nullptr && curr->exp == exp) {
curr->coef += coef;
if (curr->coef == 0) {
if (prev == nullptr) {
head = curr->next;
} else {
prev->next = curr->next;
}
delete curr;
}
} else {
node->next = curr;
prev->next = node;
}
}
}
Node *add(Node *p1, Node *p2) {
Node *head = nullptr;
while (p1 != nullptr && p2 != nullptr) {
if (p1->exp == p2->exp) {
insert(head, p1->coef + p2->coef, p1->exp);
p1 = p1->next;
p2 = p2->next;
} else if (p1->exp > p2->exp) {
insert(head, p1->coef, p1->exp);
p1 = p1->next;
} else {
insert(head, p2->coef, p2->exp);
p2 = p2->next;
}
}
while (p1 != nullptr) {
insert(head, p1->coef, p1->exp);
p1 = p1->next;
}
while (p2 != nullptr) {
insert(head, p2->coef, p2->exp);
p2 = p2->next;
}
return head;
}
Node *subtract(Node *p1, Node *p2) {
Node *head = nullptr;
while (p1 != nullptr && p2 != nullptr) {
if (p1->exp == p2->exp) {
insert(head, p1->coef - p2->coef, p1->exp);
p1 = p1->next;
p2 = p2->next;
} else if (p1->exp > p2->exp) {
insert(head, p1->coef, p1->exp);
p1 = p1->next;
} else {
insert(head, -p2->coef, p2->exp);
p2 = p2->next;
}
}
while (p1 != nullptr) {
insert(head, p1->coef, p1->exp);
p1 = p1->next;
}
while (p2 != nullptr) {
insert(head, -p2->coef, p2->exp);
p2 = p2->next;
}
return head;
}
Node *multiply(Node *p1, Node *p2) {
Node *head = nullptr;
unordered_map<int, Node *> m;
for (; p1 != nullptr; p1 = p1->next) {
for (Node *p = p2; p != nullptr; p = p->next) {
int coef = p1->coef * p->coef;
int exp = p1->exp + p->exp;
if (m.count(exp) == 0) {
m[exp] = new Node(coef, exp);
} else {
insert(m[exp], coef, exp);
}
}
}
for (auto &item : m) {
if (item.second->coef != 0) {
insert(head, item.second->coef, item.second->exp);
}
}
return head;
}
void print(Node *head) {
if (head == nullptr) {
cout << "0" << endl;
} else {
while (head != nullptr) {
cout << head->coef << "x^" << head->exp;
head = head->next;
if (head != nullptr) {
cout << " + ";
}
}
cout << endl;
}
}
int main() {
Node *p1 = nullptr, *p2 = nullptr;
insert(p1, 2, 3);
insert(p1, 4, 1);
insert(p1, 3, 0);
insert(p2, 3, 4);
insert(p2, 1, 3);
insert(p2, 2, 1);
print(add(p1, p2)); // 3x^4 + 2x^3 + 2x^1 + 3
print(subtract(p1, p2)); // -3x^4 + 2x^3 + 2x^1 - 3
print(multiply(p1, p2)); // 6x^7 + 14x^5 + 13x^4 + 10x^3 + 9x^1 + 6
return 0;
}
```
阅读全文