∫128▒〖x^4/(1+x^2 ) ⅆx〗
时间: 2023-09-19 10:08:48 浏览: 131
We can rewrite the integral as:
∫128▒〖x^4/(1-x^2+x^2) dx〗
Now we can use partial fractions to separate the integrand:
x^4 / (1-x^2+x^2) = x^4 / (1-x^2+x^2) = x^4 / (1-x^2) + x^4 / x^2
= x^2 + x^2 / (1-x^2)
So, the integral becomes:
∫128▒〖(x^2 + x^2 / (1-x^2)) dx〗
We can now integrate each term separately:
∫128▒〖x^2 dx + ∫128▒〖x^2/(1-x^2) dx〗
The first term is easy to integrate:
∫128▒〖x^2 dx = (1/3)x^3 + C〗
For the second term, we can use u-substitution:
Let u = 1-x^2, then du/dx = -2x and dx = -du/(2x)
So, the integral becomes:
-1/2 ∫128▒〖x^2/(x^2-1) dx〗 = -1/2 ∫128▒〖(u-1)/(2u) du〗
= -1/4 ∫128▒〖(1/u - 1/2) du〗
= -1/4 ln|1-x^2| + 1/8 ln|1-x^2|^2 + C
Putting it all together, we get:
∫128▒〖x^4/(1-x^2) dx = (1/3)x^3 - 1/4 ln|1-x^2| + 1/8 ln|1-x^2|^2 + C〗
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)