有关系模式R(ABCDE), F={A→BC,CD→E,B→DE→A}的范式级别
时间: 2023-10-16 12:06:41 浏览: 433
该关系模式 R(ABCDE), F={A→BC,CD→E,B→DE→A} 的范式级别为 2NF。
首先,A 是 R 的一个属性,而 A→BC,因此 B 和 C 只与 A 有关,可以单独作为一个表,即得到关系模式 R1(ABC)。
然后,CD→E,而 C 和 D 只与 CD 有关,可以单独作为一个表,即得到关系模式 R2(CDE)。
最后,对于 B→DE→A,可以将 B 和 E 作为一个表,即得到关系模式 R3(BEA)。但需要注意的是,这个依赖中的 DE 不满足 2NF 的要求,因此需要将其拆分为 D 和 E 两个关系模式,即得到关系模式 R4(DE)。
综上所述,可以得到分解后的关系模式为 R1(ABC)、R2(CDE)、R3(BEA) 和 R4(DE),其中 R1、R2 和 R4 都符合 2NF 的要求,因此整个关系模式 R 也符合 2NF 的要求。
相关问题
设关系模式R=(U,F),U={ABCDE},F={AB→CD, E→D, D→E, AE→BC, B→E},求所有候选码
我们可以使用 Armstrong 推导规则来求解候选码:
1. 对于任意X ⊆ U,如果Y ⊆ U,有X → Y ∈ F,则有X → Z ∈ F,其中Z ⊆ Y。
2. 对于任意X ⊆ U,如果X → Y ∈ F,Y → Z ∈ F,则有X → Z ∈ F。
3. 对于任意X ⊆ U,如果X → YZ ∈ F,则X → Y ∈ F 或 X → Z ∈ F。
根据第一条规则,我们可以得到以下函数依赖:
- AB → CD
- E → D
- D → E
- AE → BC
- B → E
根据第二条规则,我们可以推导出以下函数依赖:
- AB → CDE
- AE → BCDE
- B → DE
根据第三条规则,我们可以推导出以下函数依赖:
- AB → C
- AB → D
- AB → E
- AE → B
- AE → C
- AE → D
- AE → E
- B → D
- B → E
现在我们可以开始找出关系R的所有候选码:
首先,我们可以确定A、B和E是关系R的超键(超级键),因为它们的闭包包含了整个关系。
然后,我们可以考虑从关系R的超键中逐个去掉属性,看看剩下的属性是否仍然能够唯一标识元组。如果能够,那么这些属性就是候选码。
首先,我们考虑去掉A。根据AB → CDE和AE → BCDE,我们可以得到:
- AB+ = ABCDE
- AE+ = ABCDE
因此,AB和AE不是候选码。
接下来,我们考虑去掉B。根据AB → CDE、AE → BCDE和B → DE,我们可以得到:
- AB+ = ABCDE
- AE+ = ABCDE
- B+ = BDE
因此,B不是候选码。
最后,我们考虑去掉E。根据E → D和D → E,我们可以得到:
- E+ = E
- D+ = DE
因此,E不是候选码。
因此,关系R的所有候选码为:CD和BCD。
设关系模式R(ABCDE)上FD集为F,并且F={A→B,B→AD,AD→CE, B→C ,DE→A}。求最小函数依赖集。
首先,我们找到R的超键,也就是能够唯一确定关系R中元组的属性集。根据FD集F,可得超键为ABCDE。
接下来,我们使用Armstrong算法求出R的最小函数依赖集:
1. 求出F的自反闭包F+:
F+ = {A→B, B→A, B→AD, AD→CE, A→C, D→A, D→B, D→C, E→A, E→B, E→C, E→D, AB→C, AB→D, AB→E, AC→B, AC→D, AC→E, BC→A, BC→D, BC→E, BD→A, BD→C, BD→E, CD→A, CD→B, CD→E}
2. 对于F+中的每个函数依赖X→Y,逐一判断是否是冗余的。
- 对于X的每个子集X',若X'→Y也在F+中,则X→Y是冗余的。
通过这个步骤,我们可以得到最小函数依赖集为{A→B, B→AD, AD→CE, B→C, DE→A}。
阅读全文