cv2.solvePnPRansac(points3D, points2D, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE)
时间: 2024-06-04 14:08:41 浏览: 186
这是一个使用RANSAC算法来解决透视投影估计问题的函数。它的输入参数包括:
- points3D:一个N×3的数组,表示3D空间中的N个点的坐标。
- points2D:一个N×2的数组,表示这N个点在2D图像中的投影点坐标。
- camera_matrix:一个3×3的相机内参矩阵,表示相机的内部参数,包括焦距、主点坐标等。
- dist_coeffs:一个5×1或8×1的数组,表示相机的畸变系数,包括径向畸变和切向畸变。
- flags:一个可选的标志,可以是cv2.SOLVEPNP_ITERATIVE或cv2.SOLVEPNP_P3P,分别表示使用迭代算法或P3P算法来解决透视投影估计问题。
该函数的输出包括:
- success:一个布尔值,表示是否成功解决透视投影估计问题。
- rvec:一个3×1的旋转向量,表示相机的旋转向量。
- tvec:一个3×1的平移向量,表示相机的平移向量。
相关问题
逐行详细解释: void DstExistenceFusion::UpdateWithoutMeasurement(const std::string &sensor_id, double measurement_timestamp, double target_timestamp, double min_match_dist) { SensorObjectConstPtr camera_object = nullptr; if (common::SensorManager::Instance()->IsCamera(sensor_id)) { camera_object = track_ref_->GetSensorObject(sensor_id); UpdateToicWithoutCameraMeasurement(sensor_id, measurement_timestamp, min_match_dist); } SensorObjectConstPtr lidar_object = track_ref_->GetLatestLidarObject(); SensorObjectConstPtr camera_object_latest = track_ref_->GetLatestCameraObject(); SensorObjectConstPtr radar_object = track_ref_->GetLatestRadarObject(); if ((lidar_object != nullptr && lidar_object->GetSensorId() == sensor_id) || (camera_object_latest != nullptr && camera_object_latest->GetSensorId() == sensor_id) || (radar_object != nullptr && radar_object->GetSensorId() == sensor_id && lidar_object == nullptr && camera_object_latest == nullptr)) { Dst existence_evidence(fused_existence_.Name()); double unexist_factor = GetUnexistReliability(sensor_id); base::ObjectConstPtr obj = track_ref_->GetFusedObject()->GetBaseObject(); double dist_decay = ComputeDistDecay(obj, sensor_id, measurement_timestamp); double obj_unexist_prob = unexist_factor * dist_decay; existence_evidence.SetBba( {{ExistenceDstMaps::NEXIST, obj_unexist_prob}, {ExistenceDstMaps::EXISTUNKNOWN, 1 - obj_unexist_prob}}); // TODO(all) hard code for fused exist bba const double unexist_fused_w = 1.0; double min_match_dist_score = min_match_dist; // if (!sensor_manager->IsCamera(sensor_id)) { // min_match_dist_score = std::max(1 - min_match_dist / // options_.track_object_max_match_distance_, 0.0); // } ADEBUG << " before update exist prob: " << GetExistenceProbability() << " min_match_dist: " << min_match_dist << " min_match_dist_score: " << min_match_dist_score; fused_existence_ = fused_existence_ + existence_evidence * unexist_fused_w * (1 - min_match_dist_score); ADEBUG << " update without, EXIST prob: " << GetExistenceProbability() << " 1 - match_dist_score: " << 1 - min_match_dist_score << " sensor_id: " << sensor_id << " dist_decay: " << dist_decay << " track_id: " << track_ref_->GetTrackId(); } UpdateExistenceState(); }
这是一个名为DstExistenceFusion的类中的一个函数UpdateWithoutMeasurement。该函数的作用是在没有测量数据的情况下更新目标的存在状态。该函数接受四个参数,分别为传感器ID(sensor_id)、测量时间戳(measurement_timestamp)、目标时间戳(target_timestamp)和最小匹配距离(min_match_dist)。
首先,该函数通过传感器ID获取摄像头的SensorObject(SensorObjectConstPtr类型)。
然后,通过调用track_ref_对象的GetLatestLidarObject()、GetLatestCameraObject()和GetLatestRadarObject()函数,获取最新的激光雷达、摄像头和毫米波雷达的SensorObject(SensorObjectConstPtr类型)。
接下来,如果激光雷达、摄像头或毫米波雷达的SensorObject的SensorId与传入的sensor_id相同,则执行目标存在性融合操作。在目标存在性融合操作中,首先创建一个Dst类型的存在证据(existence_evidence),并设置其置信度。置信度的计算包括了未存在因子(unexist_factor)、距离衰减因子(dist_decay)和目标不存在的概率(obj_unexist_prob)。
然后,将existence_evidence与融合目标的存在证据(fused_existence_)进行合并,得到新的存在证据。在合并操作中,需要考虑到未存在因子的权重和最小匹配距离的得分。
最后,更新目标的存在状态并返回。
def tsp_path_planning(points): # TSP路径规划 n = len(points) dist_matrix = cdist(points, points) mst = minimum_spanning_tree(csr_matrix(dist_matrix)).toarray() graph = Graph() for i in range(n): graph.add_node(i) for i in range(n): for j in range(i+1, n): if mst[i, j] != 0: graph.add_edge(i, j, weight=dist_matrix[i, j]) vertex_cover = min_weighted_vertex_cover(graph, weight='weight') odd_vertices = list(vertex_cover) odd_edges = np.zeros((len(vertex_cover), 2)) k = 0 for i in range(n): if i in odd_vertices: odd_edges[k, 0] = i k += 1 closed_tour = np.array(list(vertex_cover) + [vertex_cover[0]]) for i in range(0, len(odd_edges), 2): u, v = int(odd_edges[i, 0]), int(odd_edges[i+1, 0]) min_dist, min_j = np.inf, -1 for j in range(n): if j not in odd_vertices: dist = dist_matrix[u, j] + dist_matrix[v, j] if dist < min_dist: min_dist, min_j = dist, j closed_tour = np.insert(closed_tour, np.where(closed_tour == u)[0][0]+1, min_j) closed_tour = np.insert(closed_tour, np.where(closed_tour == v)[0][0]+1, min_j) odd_vertices.remove(u) odd_vertices.remove(v) return closed_tour这个函数貌似没有删除重复的顶点
是的,你说得没错。这个函数确实没有删除重复的顶点,因为它是用于求解TSP路径规划的,而TSP路径规划中需要经过所有的顶点,因此不需要删除重复的顶点。另外,由于TSP问题是NP问题,没有一种简单的算法可以在多项式时间内求解,因此很多TSP路径规划算法都是近似算法或者启发式算法,而不是精确算法,因此允许一定的误差和重复顶点。
阅读全文