描述 给定两个正整数a和b,判断a和b是否互质(如果互质,那么a和b的最大公约数为1),互质则输出a和b互质,不互质则输出a和b的最小公倍数, 输入 输入两个正整数a和b,a,b<=10^310 3 输出 根据题目要求进行输出 输入样例 1 3 5 输出样例1 3和5互质 输入样例 2 4 6 输出样例2 12 c++代码
时间: 2024-04-14 15:30:01 浏览: 206
#include <iostream>
using namespace std;
// 计算最大公约数
int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
// 计算最小公倍数
int lcm(int a, int b) {
return a * b / gcd(a, b);
}
int main() {
int a, b;
cin >> a >> b;
if (gcd(a, b) == 1) {
cout << a << "和" << b << "互质" << endl;
} else {
cout << lcm(a, b) << endl;
}
return 0;
}
相关问题
给定两个正整数的最大公约数和最小公倍数
给定两个正整数的最大公约数和最小公倍数,可以通过以下公式求出这两个正整数:
设两个正整数为a和b,它们的最大公约数为d,最小公倍数为l,则有:
a = d * (a / d) * (b / d)
b = d * (l / d)
其中,a / d 和 b / d 互质,l = a * b / d。
因此,可以先求出最大公约数d,然后根据上述公式求出a和b。
如果三个正整数A、B、C ,A²+B²=C²则为勾股数 如果ABC之间两两互质,即A与B,A与C,B与C均互质没有公约数, 则称其为勾股数元组。 请求出给定n~m范围内所有的勾股数元组
### 回答1:
如果您想知道在给定的范围内所有的勾股数元组,可以使用如下方法:
1. 先找到所有的勾股数,即满足 A^2 + B^2 = C^2 的正整数三元组 (A, B, C)。可以使用枚举法,对于给定的范围 n~m,枚举 A 和 B 的取值,计算出 C 的值,并判断 C 是否在 n~m 范围内。
2. 判断三元组是否为勾股数元组。对于给定的勾股数三元组 (A, B, C),可以使用辗转相除法(又称欧几里得算法)求出 A, B 和 C 之间的最大公约数,若最大公约数为 1,则该三元组为勾股数元组。
示例代码:
```
def find_pythagorean_triples(n: int, m: int) -> List[Tuple[int, int, int]]:
# 列出所有勾股数
pythagorean_triples = []
for a in range(n, m+1):
for b in range(a+1, m+1):
c = math.sqrt(a**2 + b**2)
if c.is_integer() and c <= m:
pythagorean_triples.append((a, b, int(c)))
# 判断是否为勾股数元组
result = []
for triple in pythagorean_triples:
a, b, c = triple
if math.gcd(a, b) == 1 and math.gcd(a, c) == 1 and math.gcd(b, c) == 1:
result.append(triple)
return result
```
希望这对您有帮助。
### 回答2:
要求给出给定 n~m 范围内所有的勾股数元组。
首先,我们可以先生成所有可能的勾股数元组,再对每个元组进行筛选,将符合条件的勾股数元组输出。
首先,我们先生成可能的勾股数元组,即遍历所有的 A、B、C,满足 A² + B² = C²。可以设定 A 的取值范围为 n~m,B 的取值范围为 n~m,C 的取值范围为 n~m。
然后,对每个可能的勾股数元组进行判断,判断 A、B、C 是否两两互质。判断方法是计算 A、B、C 与对方的最大公约数,如果最大公约数为 1,则代表两个数互质。
最后,将符合条件的勾股数元组输出。
以下是伪代码:
def check_coprime(a, b, c):
# 计算 a、b、c 与对方的最大公约数
gcd_ab = math.gcd(a, b)
gcd_ac = math.gcd(a, c)
gcd_bc = math.gcd(b, c)
# 如果最大公约数都为 1,则两两互质
if gcd_ab == 1 and gcd_ac == 1 and gcd_bc == 1:
return True
else:
return False
def find_pythagorean_triplets(n, m):
results = []
# 遍历 A 的取值范围为 n~m
for a in range(n, m+1):
# 遍历 B 的取值范围为 n~m
for b in range(n, m+1):
# 遍历 C 的取值范围为 n~m
for c in range(n, m+1):
# 判断是否满足勾股数条件
if a**2 + b**2 == c**2:
# 判断是否两两互质
if check_coprime(a, b, c):
results.append([a, b, c])
return results
最后,调用函数 find_pythagorean_triplets(n, m) 即可得到给定 n~m 范围内所有的勾股数元组。
阅读全文