MATLAB Matrix Singular Value Decomposition (SVD) Application Guide: From Dimensionality Reduction to Image Processing, 5 Practical Cases

发布时间: 2024-09-15 01:38:53 阅读量: 45 订阅数: 38
# Guide to Singular Value Decomposition (SVD) Applications in MATLAB: From Dimensionality Reduction to Image Processing, 5 Practical Cases ## 1. Introduction to Singular Value Decomposition (SVD) Singular Value Decomposition (SVD) is a powerful linear algebra technique used to factorize a matrix into the product of three matrices: an orthogonal matrix U, a diagonal matrix Σ, and another orthogonal matrix V. The form of SVD is as follows: ``` A = UΣV^T ``` where: * A is the original matrix * U is the matrix of left singular vectors * Σ is the singular value matrix * V is the matrix of right singular vectors The singular values in SVD represent a measure of importance of the matrix A, i.e., the larger the singular value, the more important the corresponding column or row is in the matrix. SVD is widely applied in dimensionality reduction, image processing, signal processing, and many other fields. ## 2. Application of SVD in Dimensionality Reduction ### 2.1 Principal Component Analysis (PCA) **Definition:** Principal Component Analysis (PCA) is a dimensionality reduction technique that projects high-dimensional data into a lower-dimensional space through a linear transformation while preserving the maximum amount of data variance. **Principle:** The principle of PCA is to find the eigenvectors of the data covariance matrix, which represent the main directions of the data. The larger the sum of the eigenvalues corresponding to the first k eigenvectors as a proportion of the total eigenvalues, the more information is retained in the reduced data. **Steps:** 1. Center the data by subtracting the mean of each column. 2. Calculate the data covariance matrix. 3. Perform eigendecomposition on the covariance matrix to obtain eigenvalues and eigenvectors. 4. Select the eigenvectors corresponding to the first k eigenvalues as the basis vectors for the reduced data. 5. Project the data onto the subspace spanned by the basis vectors to obtain the reduced data. **Code Example:** ```matlab % Data data = randn(100, 10); % Centering data = data - mean(data); % Covariance matrix cov_matrix = cov(data); % Eigendecomposition [eigenvectors, eigenvalues] = eig(cov_matrix); % Dimensionality reduction reduced_data = data * eigenvectors(:, 1:2); ``` **Logical Analysis:** * `randn(100, 10)` generates a random matrix with 100 rows and 10 columns. * `mean(data)` calculates the mean of each column. * `cov(data)` calculates the covariance matrix. * `eig(cov_matrix)` performs eigendecomposition to obtain eigenvalues and eigenvectors. * `eigenvectors(:, 1:2)` selects the first two eigenvectors. * `data * eigenvectors(:, 1:2)` projects the data onto the subspace spanned by the basis vectors. ### 2.2 Linear Discriminant Analysis (LDA) **Definition:** Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique that projects high-dimensional data into a lower-dimensional space through a linear transformation, maximizing the distance between classes and minimizing the distance within classes. **Principle:** The principle of LDA is to find a linear projection matrix that maximizes the distance between the centroids of different classes and minimizes the distance between the centroids within the same class after projection. **Steps:** 1. Calculate the within-class scatter matrix and the between-class scatter matrix. 2. Perform eigendecomposition on the between-class scatter matrix to obtain eigenvalues and eigenvectors. 3. Select the eigenvectors corresponding to the first k eigenvalues as the basis vectors for the reduced data. 4. Project the data onto the subspace spanned by the basis vectors to obtain the reduced data. **Code Example:** ```matlab % Data data = [randn(50, 10); randn(50, 10) + 5]; labels = [ones(50, 1); ones(50, 1) * 2]; % Within-class scatter matrix Sw = zeros(size(data, 2)); for i = 1:max(labels) Sw = Sw + cov(data(labels == i, :)); end % Between-class scatter matrix Sb = zeros(size(data, 2)); for i = 1:max(labels) Sb = Sb + (mean(data(labels == i, :)) - mean(data))' * (mean(data(labels == i, :)) - mean(data)); end % Eigendecomposition [eigenvectors, eigenvalues] = eig(Sb, Sw); % Dimensionality reduction reduced_data = data * eigenvectors(:, 1:2); ``` **Logical Analysis:** * `randn(50, 10)` generates two random matrices with 50 rows and 10 columns each, representing two classes of data. * `ones(50, 1)` generates a matrix with 50 rows and 1 column, with all elements set to 1, as labels for the first class. * `ones(50, 1) * 2` generates a matrix with 50 rows and 1 column, with all elements set to 2, as labels for the second class. * `cov(data(labels == i, :))` calculates the within-class scatter matrix for each class. * `mean(data(labels == i, :))` calculates the centroid for each class. * `eig(Sb, Sw)` performs eigendecomposition on the between-class scatter matrix and the within-class scatter matrix. * `eigenvectors(:, 1:2)` selects the first two eigenvectors. * `data * eigenvectors(:, 1:2)` projects the data onto the subspace spanned by the basis vectors. ### 2.3 Non-negative Matrix Factorization (NMF) **Definition:** Non-negative Matrix Factorization (NMF) is a technique f
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

数据采集与处理:JX-300X系统数据管理的20种高效技巧

![JX-300X系统](https://www.jzpykj.com/pic2/20230404/1hs1680593813.jpg) # 摘要 本文围绕JX-300X系统在数据采集、处理与管理方面的应用进行深入探讨。首先,介绍了数据采集的基础知识和JX-300X系统的架构特性。接着,详细阐述了提高数据采集效率的技巧,包括系统内置功能、第三方工具集成以及高级数据采集技术和性能优化策略。随后,本文深入分析了JX-300X系统在数据处理和分析方面的实践,包括数据清洗、预处理、分析、挖掘和可视化技术。最后,探讨了有效的数据存储解决方案、数据安全与权限管理,以及通过案例研究分享了最佳实践和提高数据

SwiftUI实战秘籍:30天打造响应式用户界面

![SwiftUI实战秘籍:30天打造响应式用户界面](https://swdevnotes.com/images/swift/2021/0221/swiftui-layout-with-stacks.png) # 摘要 随着SwiftUI的出现,构建Apple平台应用的UI变得更为简洁和高效。本文从基础介绍开始,逐步深入到布局与组件的使用、数据绑定与状态管理、进阶功能的探究,最终达到项目实战的应用界面构建。本论文详细阐述了SwiftUI的核心概念、布局技巧、组件深度解析、动画与交互技术,以及响应式编程的实践。同时,探讨了SwiftUI在项目开发中的数据绑定原理、状态管理策略,并提供了进阶功

【IMS系统架构深度解析】:掌握关键组件与数据流

![【IMS系统架构深度解析】:掌握关键组件与数据流](https://img-blog.csdnimg.cn/20210713150211661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3lldHlvbmdqaW4=,size_16,color_FFFFFF,t_70) # 摘要 本文对IMS(IP多媒体子系统)系统架构及其核心组件进行了全面分析。首先概述了IMS系统架构,接着深入探讨了其核心组件如CSCF、MRF和SGW的角

【版本号自动生成工具探索】:第三方工具辅助Android项目版本自动化管理实用技巧

![【版本号自动生成工具探索】:第三方工具辅助Android项目版本自动化管理实用技巧](https://marketplace-cdn.atlassian.com/files/15f148f6-fbd8-4434-b1c9-bbce0ddfdc18) # 摘要 版本号自动生成工具是现代软件开发中不可或缺的辅助工具,它有助于提高项目管理效率和自动化程度。本文首先阐述了版本号管理的理论基础,强调了版本号的重要性及其在软件开发生命周期中的作用,并讨论了版本号的命名规则和升级策略。接着,详细介绍了版本号自动生成工具的选择、配置、使用以及实践案例分析,揭示了工具在自动化流程中的实际应用。进一步探讨了

【打印机小白变专家】:HL3160_3190CDW故障诊断全解析

# 摘要 本文系统地探讨了HL3160/3190CDW打印机的故障诊断与维护策略。首先介绍了打印机的基础知识,包括其硬件和软件组成及其维护重要性。接着,对常见故障进行了深入分析,覆盖了打印质量、操作故障以及硬件损坏等各类问题。文章详细阐述了故障诊断与解决方法,包括利用自检功能、软件层面的问题排查和硬件层面的维修指南。此外,本文还介绍了如何制定维护计划、性能监控和优化策略。通过案例研究和实战技巧的分享,提供了针对性的故障解决方案和维护优化的最佳实践。本文旨在为技术维修人员提供一份全面的打印机维护与故障处理指南,以提高打印机的可靠性和打印效率。 # 关键字 打印机故障;硬件组成;软件组件;维护计

逆变器滤波器设计:4个步骤降低噪声提升效率

![逆变器滤波器设计:4个步骤降低噪声提升效率](https://www.prometec.net/wp-content/uploads/2018/06/FiltroLC.jpg) # 摘要 逆变器滤波器的设计是确保电力电子系统高效、可靠运作的关键因素之一。本文首先介绍了逆变器滤波器设计的基础知识,进而分析了噪声源对逆变器性能的影响以及滤波器在抑制噪声中的重要作用。文中详细阐述了逆变器滤波器设计的步骤,包括设计指标的确定、参数选择、模拟与仿真。通过具体的设计实践和案例分析,本文展示了滤波器的设计过程和搭建测试方法,并探讨了设计优化与故障排除的策略。最后,文章展望了滤波器设计领域未来的发展趋势

【Groovy社区与资源】:最新动态与实用资源分享指南

![【Groovy社区与资源】:最新动态与实用资源分享指南](https://www.pcloudy.com/wp-content/uploads/2019/06/continuous-integration-jenkins.png) # 摘要 Groovy语言作为Java平台上的动态脚本语言,提供了灵活性和简洁性,能够大幅提升开发效率和程序的可读性。本文首先介绍Groovy的基本概念和核心特性,包括数据类型、控制结构、函数和闭包,以及如何利用这些特性简化编程模型。随后,文章探讨了Groovy脚本在自动化测试中的应用,特别是单元测试框架Spock的使用。进一步,文章详细分析了Groovy与S

【bat脚本执行不露声色】:专家揭秘CMD窗口隐身术

![【bat脚本执行不露声色】:专家揭秘CMD窗口隐身术](https://opengraph.githubassets.com/ff8dda1e5a3a4633e6813d4e5b6b7c6398acff60bef9fd9200f39fcedb96240d/AliShahbazi124/run_bat_file_in_background) # 摘要 本论文深入探讨了CMD命令提示符及Bat脚本的基础知识、执行原理、窗口控制技巧、高级隐身技术,并通过实践应用案例展示了如何打造隐身脚本。文中详细介绍了批处理文件的创建、常用命令参数、执行环境配置、错误处理、CMD窗口外观定制以及隐蔽命令执行等

【VBScript数据类型与变量管理】:变量声明、作用域与生命周期探究,让你的VBScript更高效

![【VBScript数据类型与变量管理】:变量声明、作用域与生命周期探究,让你的VBScript更高效](https://cdn.educba.com/academy/wp-content/uploads/2019/03/What-is-VBScript-2.png) # 摘要 本文系统地介绍了VBScript数据类型、变量声明和初始化、变量作用域与生命周期、高级应用以及实践案例分析与优化技巧。首先概述了VBScript支持的基本和复杂数据类型,如字符串、整数、浮点数、数组、对象等,并详细讨论了变量的声明、初始化、赋值及类型转换。接着,分析了变量的作用域和生命周期,包括全局与局部变量的区别

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )