MATLAB Matrix Singular Value Decomposition (SVD) Application Guide: From Dimensionality Reduction to Image Processing, 5 Practical Cases

发布时间: 2024-09-15 01:38:53 阅读量: 36 订阅数: 30
ZIP

svd.zip_SVD_matlab svd_singular value_svd decomposition_zip

# Guide to Singular Value Decomposition (SVD) Applications in MATLAB: From Dimensionality Reduction to Image Processing, 5 Practical Cases ## 1. Introduction to Singular Value Decomposition (SVD) Singular Value Decomposition (SVD) is a powerful linear algebra technique used to factorize a matrix into the product of three matrices: an orthogonal matrix U, a diagonal matrix Σ, and another orthogonal matrix V. The form of SVD is as follows: ``` A = UΣV^T ``` where: * A is the original matrix * U is the matrix of left singular vectors * Σ is the singular value matrix * V is the matrix of right singular vectors The singular values in SVD represent a measure of importance of the matrix A, i.e., the larger the singular value, the more important the corresponding column or row is in the matrix. SVD is widely applied in dimensionality reduction, image processing, signal processing, and many other fields. ## 2. Application of SVD in Dimensionality Reduction ### 2.1 Principal Component Analysis (PCA) **Definition:** Principal Component Analysis (PCA) is a dimensionality reduction technique that projects high-dimensional data into a lower-dimensional space through a linear transformation while preserving the maximum amount of data variance. **Principle:** The principle of PCA is to find the eigenvectors of the data covariance matrix, which represent the main directions of the data. The larger the sum of the eigenvalues corresponding to the first k eigenvectors as a proportion of the total eigenvalues, the more information is retained in the reduced data. **Steps:** 1. Center the data by subtracting the mean of each column. 2. Calculate the data covariance matrix. 3. Perform eigendecomposition on the covariance matrix to obtain eigenvalues and eigenvectors. 4. Select the eigenvectors corresponding to the first k eigenvalues as the basis vectors for the reduced data. 5. Project the data onto the subspace spanned by the basis vectors to obtain the reduced data. **Code Example:** ```matlab % Data data = randn(100, 10); % Centering data = data - mean(data); % Covariance matrix cov_matrix = cov(data); % Eigendecomposition [eigenvectors, eigenvalues] = eig(cov_matrix); % Dimensionality reduction reduced_data = data * eigenvectors(:, 1:2); ``` **Logical Analysis:** * `randn(100, 10)` generates a random matrix with 100 rows and 10 columns. * `mean(data)` calculates the mean of each column. * `cov(data)` calculates the covariance matrix. * `eig(cov_matrix)` performs eigendecomposition to obtain eigenvalues and eigenvectors. * `eigenvectors(:, 1:2)` selects the first two eigenvectors. * `data * eigenvectors(:, 1:2)` projects the data onto the subspace spanned by the basis vectors. ### 2.2 Linear Discriminant Analysis (LDA) **Definition:** Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique that projects high-dimensional data into a lower-dimensional space through a linear transformation, maximizing the distance between classes and minimizing the distance within classes. **Principle:** The principle of LDA is to find a linear projection matrix that maximizes the distance between the centroids of different classes and minimizes the distance between the centroids within the same class after projection. **Steps:** 1. Calculate the within-class scatter matrix and the between-class scatter matrix. 2. Perform eigendecomposition on the between-class scatter matrix to obtain eigenvalues and eigenvectors. 3. Select the eigenvectors corresponding to the first k eigenvalues as the basis vectors for the reduced data. 4. Project the data onto the subspace spanned by the basis vectors to obtain the reduced data. **Code Example:** ```matlab % Data data = [randn(50, 10); randn(50, 10) + 5]; labels = [ones(50, 1); ones(50, 1) * 2]; % Within-class scatter matrix Sw = zeros(size(data, 2)); for i = 1:max(labels) Sw = Sw + cov(data(labels == i, :)); end % Between-class scatter matrix Sb = zeros(size(data, 2)); for i = 1:max(labels) Sb = Sb + (mean(data(labels == i, :)) - mean(data))' * (mean(data(labels == i, :)) - mean(data)); end % Eigendecomposition [eigenvectors, eigenvalues] = eig(Sb, Sw); % Dimensionality reduction reduced_data = data * eigenvectors(:, 1:2); ``` **Logical Analysis:** * `randn(50, 10)` generates two random matrices with 50 rows and 10 columns each, representing two classes of data. * `ones(50, 1)` generates a matrix with 50 rows and 1 column, with all elements set to 1, as labels for the first class. * `ones(50, 1) * 2` generates a matrix with 50 rows and 1 column, with all elements set to 2, as labels for the second class. * `cov(data(labels == i, :))` calculates the within-class scatter matrix for each class. * `mean(data(labels == i, :))` calculates the centroid for each class. * `eig(Sb, Sw)` performs eigendecomposition on the between-class scatter matrix and the within-class scatter matrix. * `eigenvectors(:, 1:2)` selects the first two eigenvectors. * `data * eigenvectors(:, 1:2)` projects the data onto the subspace spanned by the basis vectors. ### 2.3 Non-negative Matrix Factorization (NMF) **Definition:** Non-negative Matrix Factorization (NMF) is a technique f
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【CPCL打印语言的扩展】:开发自定义命令与功能的必备技能

![移动打印系统CPCL编程手册(中文)](https://oflatest.net/wp-content/uploads/2022/08/CPCL.jpg) # 摘要 CPCL(Common Printing Command Language)是一种广泛应用于打印领域的编程语言,特别适用于工业级标签打印机。本文系统地阐述了CPCL的基础知识,深入解析了其核心组件,包括命令结构、语法特性以及与打印机的通信方式。文章还详细介绍了如何开发自定义CPCL命令,提供了实践案例,涵盖仓库物流、医疗制药以及零售POS系统集成等多个行业应用。最后,本文探讨了CPCL语言的未来发展,包括演进改进、跨平台与云

【案例分析】南京远驱控制器参数调整:常见问题的解决之道

![远驱控制器](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X3BuZy85MlJUcjlVdDZmSHJLbjI2cnU2aWFpY01Bazl6UUQ0NkptaWNWUTJKNllPTUk5Yk9DaWNpY0FHMllUOHNYVkRxR1FFOFRpYWVxT01LREJ0QUc0ckpITEVtNWxDZy82NDA?x-oss-process=image/format,png) # 摘要 南京远驱控制器作为工业自动化领域的重要设备,其参数调整对于保障设备正常运行和提高工作效率至关重要。本文

标准化通信协议V1.10:计费控制单元的实施黄金准则

![标准化通信协议V1.10:计费控制单元的实施黄金准则](https://www.decisivetactics.com/static/img/support/cable_null_hs.png) # 摘要 本文全面论述了标准化通信协议V1.10及其在计费系统中的关键作用,从理论基础到实践应用,再到高级应用和优化,进而展望了通信协议的未来发展趋势。通过深入解析协议的设计原则、架构、以及计费控制单元的理论模型,本文为通信协议提供了系统的理论支持。在实践应用方面,探讨了协议数据单元的构造与解析、计费控制单元的实现细节以及协议集成实践中的设计模式和问题解决策略。高级应用和优化部分强调了计费策略的

【AST2400性能调优】:优化性能参数的权威指南

![【AST2400性能调优】:优化性能参数的权威指南](https://img-blog.csdnimg.cn/img_convert/3e9ce8f39d3696e2ff51ec758a29c3cd.png) # 摘要 本文综合探讨了AST2400性能调优的各个方面,从基础理论到实际应用,从性能监控工具的使用到参数调优的实战,再到未来发展趋势的预测。首先概述了AST2400的性能特点和调优的重要性,接着深入解析了其架构和性能理论基础,包括核心组件、性能瓶颈、参数调优理论和关键性能指标的分析。文中详细介绍了性能监控工具的使用,包括内建监控功能和第三方工具的集成,以及性能数据的收集与分析。在

【边缘计算与5G技术】:应对ES7210-TDM级联在新一代网络中的挑战

![【边缘计算与5G技术】:应对ES7210-TDM级联在新一代网络中的挑战](http://blogs.univ-poitiers.fr/f-launay/files/2021/06/Figure20.png) # 摘要 本文探讨了边缘计算与5G技术的融合,强调了其在新一代网络技术中的核心地位。首先概述了边缘计算的基础架构和关键技术,包括其定义、技术实现和安全机制。随后,文中分析了5G技术的发展,并探索了其在多个行业中的应用场景以及与边缘计算的协同效应。文章还着重研究了ES7210-TDM级联技术在5G网络中的应用挑战,包括部署方案和实践经验。最后,对边缘计算与5G网络的未来发展趋势、创新

【频谱资源管理术】:中兴5G网管中的关键技巧

![【频谱资源管理术】:中兴5G网管中的关键技巧](https://www.tecnous.com/wp-content/uploads/2020/08/5g-dss.png) # 摘要 本文详细介绍了频谱资源管理的基础概念,分析了中兴5G网管系统架构及其在频谱资源管理中的作用。文中深入探讨了自动频率规划、动态频谱共享和频谱监测与管理工具等关键技术,并通过实践案例分析频谱资源优化与故障排除流程。文章还展望了5G网络频谱资源管理的发展趋势,强调了新技术应用和行业标准的重要性,以及对频谱资源管理未来策略的深入思考。 # 关键字 频谱资源管理;5G网管系统;自动频率规划;动态频谱共享;频谱监测工

【数据处理加速】:利用Origin软件进行矩阵转置的终极指南

![【数据处理加速】:利用Origin软件进行矩阵转置的终极指南](https://www.workingdata.co.uk/wp-content/uploads/2013/08/sales-analysis-with-pivot-tables-09.png) # 摘要 Origin软件在科学数据处理中广泛应用,其矩阵转置工具对于数据的组织和分析至关重要。本文首先介绍了Origin软件以及矩阵转置的基本概念和在数据处理中的角色。随后,详细阐述了Origin软件中矩阵转置工具的界面和操作流程,并对实操技巧和注意事项进行了讲解。通过具体应用案例,展示了矩阵转置在生物统计和材料科学领域的专业应用

【Origin学习进阶】:获取资源,深入学习ASCII码文件导入

![导入多个ASCII码文件数据的Origin教程](https://www.spatialmanager.com/assets/images/blog/2014/06/ASCII-file-including-more-data.png) # 摘要 Origin软件作为一种流行的科学绘图和数据分析工具,其处理ASCII码文件的能力对于科研人员来说至关重要。本文首先概述了Origin软件及其资源获取方式,接着详细介绍了ASCII码文件导入的基本原理,包括文件格式解析、导入前的准备工作、导入向导的使用。文中进一步探讨了导入ASCII码文件的高级技巧,例如解析复杂文件、自动化导入以及数据清洗和整

【文件系统演进】:数据持久化技术的革命,实践中的选择与应用

![【文件系统演进】:数据持久化技术的革命,实践中的选择与应用](https://study.com/cimages/videopreview/what-is-an-optical-drive-definition-types-function_110956.jpg) # 摘要 文件系统作为计算机系统的核心组成部分,不仅负责数据的组织、存储和检索,也对系统的性能、可靠性及安全性产生深远影响。本文系统阐述了文件系统的基本概念、理论基础和关键技术,探讨了文件系统设计原则和性能考量,以及元数据管理和目录结构的重要性。同时,分析了现代文件系统的技术革新,包括分布式文件系统的架构、高性能文件系统的优化

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )