用遗传算法对minF_cost =F_inw+F_loss+F_en+F_DG-F_u进行求解,并转换成matlab代码
时间: 2024-06-03 19:09:48 浏览: 72
基于遗传算法求解二次函数最小值问题附matlab代码
5星 · 资源好评率100%
遗传算法的步骤如下:
1. 初始化种群,即生成一定数量的个体(解),可随机生成或根据经验确定。
2. 对每个个体计算适应度(即目标函数值),并按照适应度大小进行排序。
3. 选择一定数量的优秀个体进行交叉和变异,生成新的个体。
4. 对新生成的个体进行适应度计算,并按照适应度大小进行排序。
5. 重复步骤3和4,直到满足终止条件。
对于本题,可按照以下步骤进行求解:
1. 确定变量范围和精度,如F_inw、F_loss、F_en、F_DG和F_u的取值范围和精度。
2. 随机生成一定数量的个体,每个个体包含F_inw、F_loss、F_en、F_DG和F_u五个变量的值,可用rand函数实现。
3. 对每个个体计算适应度,即计算minF_cost =F_inw F_loss F_en F_DG-F_u的值,可用cos函数实现。
4. 按照适应度大小进行排序,选出一定数量的优秀个体进行交叉和变异,生成新的个体。可用选择、交叉和变异函数实现。
5. 对新生成的个体进行适应度计算,并按照适应度大小进行排序。
6. 重复步骤4和5,直到满足终止条件,如达到最大迭代次数或适应度值达到一定阈值。
以下是matlab代码示例:
% 变量范围和精度
F_inw_min = 0;
F_inw_max = 1;
F_inw_precision = 0.01;
F_loss_min = 0;
F_loss_max = 1;
F_loss_precision = 0.01;
F_en_min = 0;
F_en_max = 1;
F_en_precision = 0.01;
F_DG_min = 0;
F_DG_max = 1;
F_DG_precision = 0.01;
F_u_min = 0;
F_u_max = 1;
F_u_precision = 0.01;
% 种群数量和迭代次数
pop_size = 50;
max_iter = 1000;
% 随机生成初始种群
pop = zeros(pop_size, 5);
pop(:, 1) = round(rand(pop_size, 1) * (F_inw_max - F_inw_min) / F_inw_precision) * F_inw_precision + F_inw_min;
pop(:, 2) = round(rand(pop_size, 1) * (F_loss_max - F_loss_min) / F_loss_precision) * F_loss_precision + F_loss_min;
pop(:, 3) = round(rand(pop_size, 1) * (F_en_max - F_en_min) / F_en_precision) * F_en_precision + F_en_min;
pop(:, 4) = round(rand(pop_size, 1) * (F_DG_max - F_DG_min) / F_DG_precision) * F_DG_precision + F_DG_min;
pop(:, 5) = round(rand(pop_size, 1) * (F_u_max - F_u_min) / F_u_precision) * F_u_precision + F_u_min;
% 计算初始种群的适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
fitness(i) = cos(pop(i, 1) * pop(i, 2) * pop(i, 3) * pop(i, 4) - pop(i, 5));
end
% 迭代搜索
for iter = 1:max_iter
% 选择优秀个体
[~, idx] = sort(fitness, 'descend');
elite = pop(idx(1:pop_size/2), :);
% 交叉和变异生成新个体
new_pop = zeros(pop_size, 5);
for i = 1:pop_size
% 选择两个父代个体
parent1 = elite(randi(pop_size/2), :);
parent2 = elite(randi(pop_size/2), :);
% 交叉生成新个体
new_pop(i, :) = parent1;
mask = randi([0 1], 1, 5);
new_pop(i, mask == 1) = parent2(mask == 1);
% 变异生成新个体
mask = randi([0 1], 1, 5);
new_pop(i, mask == 1) = round(rand(sum(mask), 1) .* (F_inw_max - F_inw_min) / F_inw_precision) ...
* F_inw_precision + F_inw_min;
mask = randi([0 1], 1, 5);
new_pop(i, mask == 1) = round(rand(sum(mask), 1) .* (F_loss_max - F_loss_min) / F_loss_precision) ...
* F_loss_precision + F_loss_min;
mask = randi([0 1], 1, 5);
new_pop(i, mask == 1) = round(rand(sum(mask), 1) .* (F_en_max - F_en_min) / F_en_precision) ...
* F_en_precision + F_en_min;
mask = randi([0 1], 1, 5);
new_pop(i, mask == 1) = round(rand(sum(mask), 1) .* (F_DG_max - F_DG_min) / F_DG_precision) ...
* F_DG_precision + F_DG_min;
mask = randi([0 1], 1, 5);
new_pop(i, mask == 1) = round(rand(sum(mask), 1) .* (F_u_max - F_u_min) / F_u_precision) ...
* F_u_precision + F_u_min;
end
% 计算新个体的适应度
new_fitness = zeros(pop_size, 1);
for i = 1:pop_size
new_fitness(i) = cos(new_pop(i, 1) * new_pop(i, 2) * new_pop(i, 3) * new_pop(i, 4) - new_pop(i, 5));
end
% 合并新个体和优秀个体
pop = [elite; new_pop];
fitness = [fitness(idx(1:pop_size/2)); new_fitness];
end
% 输出最优解和最优适应度
[~, idx] = max(fitness);
best_sol = pop(idx, :)
best_fitness = fitness(idx)
阅读全文