计算ln(1+1/x)/(sinx*(cos2x+1))的不定积分
时间: 2023-11-01 16:06:55 浏览: 170
首先,化简被积函数:
ln(1 1/x) = ln(x/(x-1)) = ln x - ln(x-1)
cos2x 1 = (1 + cos2x)/2 = (1 + 2cos2x - 1)/2 = cos2x + 1/2
因此,被积函数可以写成:
(ln x - ln(x-1))/(sinx*(cos2x + 1/2))
接下来,分部积分法:
设f(x) = ln x - ln(x-1),g(x) = 1/(sinx*(cos2x + 1/2))
f'(x) = 1/x - 1/(x-1),g'(x) = (-sinx*cos2x - sinx)/(sinx^2*(cos2x + 1/2)^2)
积分式可以写成:
∫f(x)g'(x)dx = f(x)g(x) - ∫g(x)f'(x)dx
计算f(x)g(x):
f(x)g(x) = (ln x - ln(x-1))/(sinx*(cos2x + 1/2))
计算∫g(x)f'(x)dx:
∫g(x)f'(x)dx = ∫(-sinx*cos2x - sinx)/(sinx^2*(cos2x + 1/2)^2)*(1/x - 1/(x-1))dx
化简:
∫g(x)f'(x)dx = ∫(-cos2x - 1/2)/(sinx*(cos2x + 1/2)^2)dx + ∫(cos2x + 1/2)/(sinx^2*(cos2x + 1/2)^2)dx
对于第一个积分,令u = cos2x + 1/2,du = -2sin2xdx,得到:
∫(-cos2x - 1/2)/(sinx*(cos2x + 1/2)^2)dx = -∫du/u^2 = 1/u + C = 2/(2cos2x + 1) + C
对于第二个积分,可以使用三角恒等式sin2x = 2sinx*cosx:
∫(cos2x + 1/2)/(sinx^2*(cos2x + 1/2)^2)dx = ∫(cos2x + 1/2)/(2sinx*cos2x)^2*(2cosx)dx
令u = cos2x,du = -sin2xdx,得到:
∫(cos2x + 1/2)/(sinx^2*(cos2x + 1/2)^2)dx = -1/sin2x + ∫du/(2u^2) = -1/(2sinxcos2x) + 1/(4cos2x) + C
将f(x)g(x)和∫g(x)f'(x)dx代入分部积分公式,得到:
∫(ln x - ln(x-1))/(sinx*(cos2x + 1/2))dx = (ln x - ln(x-1))*[2/(2cos2x + 1)] - [2/(2sinxcos2x) - 1/(4cos2x)] + C
化简可得:
∫(ln x - ln(x-1))/(sinx*(cos2x + 1/2))dx = ln(x*(2cos2x + 1)/(2sinxcos2x*(x-1))) + 1/(4cos2x) + C
因此,原式的不定积分为:
ln(x*(2cos2x + 1)/(2sinxcos2x*(x-1))) + 1/(4cos2x) + C
阅读全文