fake = model(data) data, label, fake = [x*0.5+0.5 for x in [data, label, fake]]
时间: 2024-02-15 17:47:59 浏览: 120
This code snippet appears to be scaling the values in the variables data, label, and fake by a factor of 0.5 and then adding 0.5 to the result.
This is likely being done to normalize the data values to a range between 0 and 1. Scaling the values by 0.5 will reduce their magnitude by half, and adding 0.5 will shift the range up so that the minimum value becomes 0 and the maximum value becomes 1.
It's worth noting that without further context or information about the data and model being used, it's difficult to say for sure why this normalization is being done or whether it's appropriate.
相关问题
for p in netD.parameters(): # reset requires_grad p.requires_grad = False # avoid computation netG.zero_grad() input_attv = Variable(input_att) noise.normal_(0, 1) noisev = Variable(noise) fake = netG(noisev, input_attv) criticG_fake = netD(fake, input_attv) criticG_fake = criticG_fake.mean() G_cost = -criticG_fake # classification loss c_errG = cls_criterion(pretrain_cls.model(fake), Variable(input_label)) errG = G_cost + opt.cls_weight*c_errG errG.backward() optimizerG.step() mean_lossG /= data.ntrain / opt.batch_size mean_lossD /= data.ntrain / opt.batch_size print('[%d/%d] Loss_D: %.4f Loss_G: %.4f, Wasserstein_dist: %.4f, c_errG:%.4f' % (epoch, opt.nepoch, D_cost.data[0], G_cost.data[0], Wasserstein_D.data[0], c_errG.data[0]))
这段代码是用于训练生成器(netG)的部分。
首先,通过循环遍历判别器(netD)的参数,将它们的`requires_grad`属性设置为False,以避免进行梯度计算。
然后,通过调用`zero_grad`方法清空生成器的梯度。
接下来,创建变量input_attv和noisev,分别将输入的属性特征(input_att)和噪声(noise)转换为可求导的变量。
使用生成器netG生成合成图像fake,并将其输入到判别器netD中得到判别器对合成图像的评分criticG_fake。将criticG_fake取平均值。
计算生成器的损失函数G_cost,为负的criticG_fake。
计算分类损失函数c_errG,通过将合成图像fake输入预训练的分类器pretrain_cls.model,并与真实标签(input_label)进行比较。
计算总体损失函数errG,为G_cost加上分类损失乘以权重参数opt.cls_weight。
通过调用`backward`方法进行反向传播,计算梯度。
通过调用`step`方法执行一步优化器(optimizerG)更新生成器模型的参数。
在每个epoch的训练中,累积计算平均损失mean_lossG和mean_lossD。
最后,打印出当前epoch的损失函数值(Loss_D和Loss_G)、Wasserstein距离(Wasserstein_dist)和分类损失(c_errG)。
请注意,这段代码中引用了一些变量和模型,如netD、netG、pretrain_cls等,可能需要事先定义或导入。在实际应用中,可能需要根据具体需求对这些代码进行适当的修改和调用。
losses, fake_image, real_image, input_label, L1_loss, style_loss, clothes_mask, CE_loss, rgb, alpha = model( Variable(data['label'].cuda()), Variable(data['edge'].cuda()), Variable(img_fore.cuda()), Variable(mask_clothes.cuda()) , Variable(data['color'].cuda()), Variable(all_clothes_label.cuda()), Variable(data['image'].cuda()), Variable(data['pose'].cuda()), Variable(data['image'].cuda()), Variable(mask_fore.cuda())) Traceback (most recent call last): File "/home/a/下载/pycharm-community-2023.1.3/plugins/python-ce/helpers/pydev/pydevd.py", line 1496, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/home/a/下载/pycharm-community-2023.1.3/plugins/python-ce/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/home/a/pycharmproject/clothes_try_on_copy/try-on_parse/ACGPN_inference/use_100epoch_to_test.py", line 203, in <module> losses, fake_image, real_image, input_label, L1_loss, style_loss, clothes_mask, CE_loss, rgb, alpha = model( File "/home/a/.conda/envs/clothes_try_on_copy1/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) TypeError: forward() takes 2 positional arguments but 11 were given 进程已结束,退出代码1
根据报错信息,可以看出问题出在调用模型的forward()函数时参数数量不匹配。模型的forward()函数定义了接收2个位置参数,但是在调用时传入了11个参数。
可能的解决方法是检查模型的forward()函数的定义,并确保传入的参数数量与定义的参数数量一致。你可以确认模型的forward()函数是否接收了正确的参数,并根据需要进行调整。
另外,还可以检查传递给模型的参数是否正确,确保每个参数的类型和形状与模型的输入要求相匹配。
如果问题仍然存在,建议你提供更多相关代码的上下文,以便能够更准确地找到问题所在并给出解决方案。
阅读全文