设随机变量(x,y)在区域D=[0<x<2,0<y<2]内服从均匀分布,求,Z=xy的概率密度函数
时间: 2024-03-29 21:38:19 浏览: 71
概率论与数理统计-多维随机变量及其分布练习题
同样地,可以通过变量变换法求出Z=xy的概率密度函数。
设变量变换为:
u = x
v = xy
则反函数为:
x = u
y = v/u
通过计算Jacobian行列式可以得到:
|J| = |∂(x,y)/∂(u,v)| = |1 0| = 1
因此,有:
f<sub>UV</sub>(u,v) = f<sub>XY</sub>(x,y)|J| = 1/4
因为X和Y在D区域内服从均匀分布,所以它们的概率密度函数为:
f<sub>XY</sub>(x,y) = 1/(2×2) = 1/4
综上所述,Z=xy的概率密度函数为:
f<sub>Z</sub>(z) = ∫f<sub>UV</sub>(u,z/u)|du| = ∫<sub>0</sub><sup>2</sup>1/4×1/u|du| = 1/4×ln(2/z),其中0<z<4。
阅读全文