51使用pwm分别调节小车左右两轮的前进速度

时间: 2023-09-18 10:08:03 浏览: 240
首先,你需要了解51单片机的PWM输出方式。51单片机一般使用定时器来实现PWM输出,具体的实现方式可以查看51单片机的相关资料。 接下来,我们可以按照以下步骤进行左右轮的速度控制: 1. 使用两个定时器,一个控制左轮的PWM输出,一个控制右轮的PWM输出。 2. 设置定时器的工作模式为PWM输出模式,并设置对应的占空比,占空比可以根据需要进行调节,以达到控制车轮转速的目的。 3. 初始化定时器,并启动定时器,使其开始工作。 4. 在主循环中,可以通过修改占空比来控制车轮的转速,例如增加左轮的占空比可以让车向左转,减小右轮的占空比可以让车向右转。 下面是一个简单的示例代码,实现了两个定时器分别控制左右轮的PWM输出: ``` #include<reg52.h> //头文件 #define uint unsigned int #define uchar unsigned char sbit IN1=P3^0; //IN1控制左轮 sbit IN2=P3^1; //IN2控制左轮 sbit IN3=P3^2; //IN3控制右轮 sbit IN4=P3^3; //IN4控制右轮 void timer0_init(uint ms) //定时器0初始化函数,用于控制左轮PWM输出 { TMOD &= 0xF0; TMOD |= 0x01; TH0 = (65536 - 11059200/12/1000*ms)/256; TL0 = (65536 - 11059200/12/1000*ms)%256; ET0 = 1; EA = 1; TR0 = 1; } void timer1_init(uint ms) //定时器1初始化函数,用于控制右轮PWM输出 { TMOD &= 0x0F; TMOD |= 0x10; TH1 = (65536 - 11059200/12/1000*ms)/256; TL1 = (65536 - 11059200/12/1000*ms)%256; ET1 = 1; EA = 1; TR1 = 1; } void main() { timer0_init(10); //初始化定时器0,控制左轮PWM输出,周期为10ms timer1_init(10); //初始化定时器1,控制右轮PWM输出,周期为10ms while(1) { //控制左轮向前转动 IN1 = 1; IN2 = 0; //控制右轮向前转动 IN3 = 1; IN4 = 0; //增加左轮占空比,减小右轮占空比,实现左转 TH0 = (65536 - 11059200/12/1000*5)/256; TL0 = (65536 - 11059200/12/1000*5)%256; TH1 = (65536 - 11059200/12/1000*3)/256; TL1 = (65536 - 11059200/12/1000*3)%256; delay_ms(1000); //延时1秒 } } void timer0() interrupt 1 //定时器0中断服务函数,用于控制左轮PWM输出 { static bit pwm = 0; static uint cnt = 0; if(++cnt >= 100) //10ms周期,占空比为50% { cnt = 0; pwm = !pwm; } if(pwm) { IN1 = 1; IN2 = 0; } else { IN1 = 0; IN2 = 1; } } void timer1() interrupt 3 //定时器1中断服务函数,用于控制右轮PWM输出 { static bit pwm = 0; static uint cnt = 0; if(++cnt >= 100) //10ms周期,占空比为30% { cnt = 0; pwm = !pwm; } if(pwm) { IN3 = 1; IN4 = 0; } else { IN3 = 0; IN4 = 1; } } void delay_ms(uint ms) //延时函数 { uint i, j; for(i = 0; i < ms; i++) { for(j = 0; j < 11059; j++); } } ``` 以上代码仅供参考,实际应用中需要根据具体的硬件和需求进行调整。

相关推荐

最新推荐

recommend-type

51单片机脉冲宽度调制(PWM)控制LED灯亮度

绍一个51系列单片机采用脉冲宽度调制(PWM)方式控制LED灯亮度的一个程序,大家都知道,51单片机本身是没有pwm接口的,这个程序是通过软件模拟pwm.在一定的频率的方波中,调整高电平和低电平的占空比,即可实现LED灯...
recommend-type

一种新型的两通道PWM的LED调光调色方法

针对PWM调光调色,此前尚缺乏一个利用PWM同时控制光源光度量和色度量的...本文提出了一种新型的两通道PWM调光调色的混光模型,可以准确地调制出期望光度、色度要求的光谱,为LED的动态照明设计提供了一个有效的实现方法
recommend-type

后轮双电机差速小车控制原理.pdf

设舵机控制转角为θ,车前进速度为v,前后轮中心距为L,后轮轮距为T,后转弯内侧轮速度为v1,后转弯外侧轮速度为v2。根据运动关系分析,我们可以得到: v1 = v \* (1 - T \* tan(θ) / 2 / L) v2 = v \* (1 + T \* ...
recommend-type

51产生PWM新法,两次中断

/*在现在我已知的用51单片机产生PWM的方法中,基本都是通过定时器中断来实现的,这样一个PWM周期就包含了很多 小中断,浪费了大量时间,尤其是当程序较复杂时,往往就会出问题!而本设计则克服了这个缺点!一个周期...
recommend-type

51单片机H桥电路控制电机正反转和PWM调速

搭了个H桥电路,控制电机的正反转和PWM调速,程序是网上的,改改引脚就能用,本文详细描绘了电路图和源程序。
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。