基于双边Jacobi的对任意矩阵进行svd的Matlab代码
时间: 2023-12-06 07:45:39 浏览: 83
JOS_SVD(G):该程序使用 Jacobi 方法计算矩阵的 SVD-matlab开发
以下是基于双边Jacobi的对任意矩阵进行svd的Matlab代码:
```
function [U,S,V] = bidiagonal_jacobi(A)
% Bidiagonal Jacobi SVD algorithm
% Input: A - m x n matrix to be factorized
% Output: U - m x m orthogonal matrix
% S - m x n diagonal matrix with singular values
% V - n x n orthogonal matrix
[m,n] = size(A);
U = eye(m);
V = eye(n);
p = min(m,n);
for k = 1:p
for j = k+1:n
% Compute Givens rotation for (k,k) and (k,j) entries
[c,s] = givens(A(k,k),A(k,j));
% Apply Givens rotation to A and V
A([k,j],k:n) = [c -s; s c]' * A([k,j],k:n);
V(:,[k,j]) = V(:,[k,j]) * [c -s; s c];
end
for i = k+1:m
% Compute Givens rotation for (k,k) and (i,k) entries
[c,s] = givens(A(k,k),A(i,k));
% Apply Givens rotation to A and U
A(k:n,[k,i]) = A(k:n,[k,i]) * [c -s; s c];
U(:,[k,i]) = U(:,[k,i]) * [c -s; s c];
end
end
S = diag(diag(A)); % Extract singular values from diagonal entries
end
function [c,s] = givens(a,b)
% Compute Givens rotation for (a,b)
if b == 0
c = 1;
s = 0;
elseif abs(b) > abs(a)
t = -a/b;
s = 1/sqrt(1+t^2);
c = s*t;
else
t = -b/a;
c = 1/sqrt(1+t^2);
s = c*t;
end
end
```
该函数的输入为一个m×n的矩阵A,输出为其SVD分解的三个矩阵U、S和V。其中,U和V均为正交矩阵,S为对角矩阵。该函数采用双边Jacobi算法对A进行分解,具体实现请参考代码注释。
阅读全文