混合整数线性规划模型 加权图的连通k划分 python
时间: 2023-06-17 20:03:05 浏览: 159
混合整数线性规划模型是一种优化模型,可以用于求解一些复杂的问题。它将目标函数和约束条件表示为线性函数,并且包含整数变量和连续变量。
加权图的连通k划分是一个经典的图论问题,它的目标是将一个加权图分成k个连通子图,并使得每个子图的总权值最小。这个问题可以通过混合整数线性规划模型来求解,其中整数变量表示节点所属的子图,线性约束条件保证每个子图都是连通的,并且目标函数是每个子图的总权值之和。
在Python中,可以使用一些优化库来求解这种混合整数线性规划模型,比如Gurobi、CPLEX等。这些库提供了丰富的API,可以方便地构建模型、设置变量和约束条件,并且求解出最优解。
如果你想实现加权图的连通k划分,可以先使用一个图论库(比如NetworkX)来构建加权图,然后使用优化库来求解混合整数线性规划模型,最后将结果映射到子图上即可。
相关问题
混合整数线性规划模型 加权图的连通k划分 python例子
以下是一个混合整数线性规划模型的加权图的连通k划分Python例子,该例子使用PuLP库实现:
```python
from pulp import *
# 定义图的节点和边
nodes = [1, 2, 3, 4, 5, 6]
edges = [(1, 2, 3), (1, 3, 4), (2, 3, 5), (2, 4, 6), (3, 4, 7), (4, 5, 8), (4, 6, 9), (5, 6, 10)]
# 定义连通k划分的参数
k = 2
# 定义模型
model = LpProblem("Graph Partitioning", LpMinimize)
# 定义变量
x = LpVariable.dicts("x", edges, cat=LpBinary)
y = LpVariable.dicts("y", nodes, cat=LpBinary)
z = LpVariable.dicts("z", range(k), cat=LpBinary)
# 定义目标函数
model += lpSum([x[i] * edges[i][2] for i in range(len(edges))])
# 定义约束条件
for i in range(len(nodes)):
model += lpSum([x[j] for j in range(len(edges)) if nodes[i] in edges[j]]) <= 2 * y[nodes[i]]
model += lpSum([x[j] for j in range(len(edges)) if nodes[i] in edges[j]]) >= y[nodes[i]]
for i in range(k):
model += lpSum([y[j] for j in nodes]) == z[i]
for i in range(len(edges)):
model += x[i] <= z[0]
model += x[i] <= z[1]
# 解决模型
model.solve()
# 输出结果
print("Optimal solution:")
for i in range(len(edges)):
if value(x[i]) == 1:
print(edges[i])
print("Partition:")
for i in range(k):
print([nodes[j] for j in range(len(nodes)) if value(y[nodes[j]]) == 1 and value(z[i]) == 1])
```
该例子中,我们定义了一个具有6个节点和8条边的加权图,并且将其划分为2个连通部分。我们使用PuLP库定义了模型、变量、目标函数和约束条件,并将其解决。最后,我们输出了解决方案和划分结果。
利用混合整数线性规划模型对加权图的连通k划分 python
连通k划分是一个经典的图分割问题,可以使用混合整数线性规划模型(MILP)进行求解。下面是一个用Python实现的例子:
首先,我们需要引入相关的库,包括Gurobi、NetworkX和Matplotlib。其中,Gurobi是一个商业数学优化软件,需要安装并获取许可证才能使用。NetworkX是一个用于创建、操作和研究复杂网络的Python库。Matplotlib是Python中的一个绘图库,用于绘制图形。
```python
import gurobipy as gp
from gurobipy import GRB
import networkx as nx
import matplotlib.pyplot as plt
```
接下来,我们定义一个函数,用于生成加权图。该函数使用NetworkX库中的函数生成一个随机图,并为每条边分配一个随机权重。
```python
def generate_weighted_graph(n_nodes, n_edges):
G = nx.gnm_random_graph(n_nodes, n_edges)
for (u, v) in G.edges():
G[u][v]['weight'] = np.random.randint(0, 10)
return G
```
然后,我们定义一个函数,用于解决连通k划分问题。该函数使用Gurobi库中的混合整数线性规划模型进行求解。具体来说,我们使用0-1变量$x_{ij}$表示节点$i$是否分配到集合$j$中,使用0-1变量$y_{uv}$表示边$uv$是否跨越两个不同的集合。我们的目标是最小化划分后跨越两个不同集合的边的权重之和。同时,我们需要保证每个集合都是连通的。
```python
def solve_connected_k_partition(G, k):
n_nodes = G.number_of_nodes()
# Create model
model = gp.Model("connected_k_partition")
# Create variables
x = {}
y = {}
for i in range(n_nodes):
for j in range(k):
x[i, j] = model.addVar(vtype=GRB.BINARY, name="x_%s_%s" % (i, j))
for (u, v) in G.edges():
for j in range(k):
y[u, v, j] = model.addVar(vtype=GRB.BINARY, name="y_%s_%s_%s" % (u, v, j))
# Set objective
obj = gp.quicksum(G[u][v]['weight'] * y[u, v, j] for (u, v) in G.edges() for j in range(k))
model.setObjective(obj, GRB.MINIMIZE)
# Add constraints
for i in range(n_nodes):
model.addConstr(gp.quicksum(x[i, j] for j in range(k)) == 1)
for j in range(k):
model.addConstr(gp.quicksum(x[i, j] for i in range(n_nodes)) >= 1)
for (u, v) in G.edges():
for j in range(k):
model.addConstr(y[u, v, j] <= x[u, j])
model.addConstr(y[u, v, j] <= x[v, j])
model.addConstr(gp.quicksum(y[u, v, j] for j in range(k)) >= 1)
# Optimize model
model.optimize()
# Extract solution
partition = []
for j in range(k):
subgraph = G.subgraph([i for i in range(n_nodes) if x[i, j].x > 0.5])
partition.append(subgraph)
return partition
```
最后,我们定义一个主函数,用于生成加权图并解决连通k划分问题。我们首先生成一个加权图,然后使用solve_connected_k_partition函数对其进行划分,并将结果绘制出来。
```python
def main():
n_nodes = 30
n_edges = 100
k = 3
G = generate_weighted_graph(n_nodes, n_edges)
partition = solve_connected_k_partition(G, k)
pos = nx.spring_layout(G)
colors = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
for i in range(k):
nx.draw_networkx(partition[i], pos, node_color=colors[i], with_labels=True)
plt.show()
```
完整代码如下:
```python
import gurobipy as gp
from gurobipy import GRB
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
def generate_weighted_graph(n_nodes, n_edges):
G = nx.gnm_random_graph(n_nodes, n_edges)
for (u, v) in G.edges():
G[u][v]['weight'] = np.random.randint(0, 10)
return G
def solve_connected_k_partition(G, k):
n_nodes = G.number_of_nodes()
# Create model
model = gp.Model("connected_k_partition")
# Create variables
x = {}
y = {}
for i in range(n_nodes):
for j in range(k):
x[i, j] = model.addVar(vtype=GRB.BINARY, name="x_%s_%s" % (i, j))
for (u, v) in G.edges():
for j in range(k):
y[u, v, j] = model.addVar(vtype=GRB.BINARY, name="y_%s_%s_%s" % (u, v, j))
# Set objective
obj = gp.quicksum(G[u][v]['weight'] * y[u, v, j] for (u, v) in G.edges() for j in range(k))
model.setObjective(obj, GRB.MINIMIZE)
# Add constraints
for i in range(n_nodes):
model.addConstr(gp.quicksum(x[i, j] for j in range(k)) == 1)
for j in range(k):
model.addConstr(gp.quicksum(x[i, j] for i in range(n_nodes)) >= 1)
for (u, v) in G.edges():
for j in range(k):
model.addConstr(y[u, v, j] <= x[u, j])
model.addConstr(y[u, v, j] <= x[v, j])
model.addConstr(gp.quicksum(y[u, v, j] for j in range(k)) >= 1)
# Optimize model
model.optimize()
# Extract solution
partition = []
for j in range(k):
subgraph = G.subgraph([i for i in range(n_nodes) if x[i, j].x > 0.5])
partition.append(subgraph)
return partition
def main():
n_nodes = 30
n_edges = 100
k = 3
G = generate_weighted_graph(n_nodes, n_edges)
partition = solve_connected_k_partition(G, k)
pos = nx.spring_layout(G)
colors = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
for i in range(k):
nx.draw_networkx(partition[i], pos, node_color=colors[i], with_labels=True)
plt.show()
if __name__ == '__main__':
main()
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)