$$ \begin{aligned} & \frac{d}{dt}\left( m_{2}l_{2}^{2}\dot{\theta}_{2}+4m_{2}l_{1}l_{2}\dot{\theta}_{1}\cos(\theta_{2}-\theta_{1}) \right)
时间: 2023-09-02 09:06:02 浏览: 110
\end{aligned} $$
根据链式法则,我们有:
$$ \begin{aligned} & \frac{d}{dt}\left( m_{2}l_{2}^{2}\dot{\theta}_{2}+4m_{2}l_{1}l_{2}\dot{\theta}_{1}\cos(\theta_{2}-\theta_{1}) \right) \\ =& m_{2}l_{2}^{2}\ddot{\theta}_{2}+4m_{2}l_{1}l_{2}\left(-\dot{\theta}_{1}\dot{\theta}_{2}\sin(\theta_{2}-\theta_{1})+\ddot{\theta}_{1}\cos(\theta_{2}-\theta_{1})-\dot{\theta}_{1}\dot{\theta}_{2}\sin(\theta_{2}-\theta_{1})-\dot{\theta}_{1}^{2}\sin(\theta_{2}-\theta_{1})\right) \\ =& m_{2}l_{2}^{2}\ddot{\theta}_{2}+4m_{2}l_{1}l_{2}\left(\ddot{\theta}_{1}\cos(\theta_{2}-\theta_{1})-\dot{\theta}_{1}^{2}\sin(\theta_{2}-\theta_{1})-\dot{\theta}_{1}\dot{\theta}_{2}\sin(\theta_{2}-\theta_{1})\right) \end{aligned} $$
其中,$m_2$ 是挂在杆上的质量,$l_1$ 和 $l_2$ 分别是两个杆的长度,$\theta_1$ 和 $\theta_2$ 分别是两个杆的角度,$\dot{\theta}_1$ 和 $\dot{\theta}_2$ 分别是两个杆的角速度,$\ddot{\theta}_1$ 和 $\ddot{\theta}_2$ 分别是两个杆的角加速度。
阅读全文