解释$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}$
时间: 2023-08-30 14:04:51 浏览: 151
$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}$ 是一个数学表达式。我们可以将其分解为两个分式相加的形式,然后进行有理化简。
首先,根据加减分式通分的方法,可以得到:
$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\frac{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}{(\sqrt{2}-\sqrt{3})(\sqrt{3}-\sqrt{2})}+\frac{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}{(\sqrt{3}-\sqrt{2})(\sqrt{2}+\sqrt{3})}$
化简后得到:
$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\frac{-\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{3}-\sqrt{3}^2+\sqrt{2}^2}{\sqrt{2}^2-\sqrt{3}^2}+\frac{\sqrt{2}^2-\sqrt{3}^2}{\sqrt{3}^2-\sqrt{2}^2}$
化简后得到:
$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{2}+\sqrt{3}}{1}=-\sqrt{2}-\sqrt{3}+\sqrt{2}+\sqrt{3}$
化简后得到:
$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}=0$
因此,$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}$ 的值为 $0$。
阅读全文