迎风格式计算一维线性平流方程数值解的python代码
时间: 2024-02-04 21:03:54 浏览: 192
以下是一维线性平流方程的迎风格式计算的 Python 代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义计算参数
nx = 101 # 网格数
nt = 100 # 时间步数
dx = 2 / (nx - 1) # 空间步长
dt = 0.02 # 时间步长
c = 1 # 平流速度
# 初始化初始条件
u = np.ones(nx)
u[int(0.5/dx):int(1/dx+1)] = 2
# 迭代计算
un = np.ones(nx)
for n in range(nt):
un = u.copy()
for i in range(1, nx):
u[i] = un[i] - c * dt / dx * (un[i] - un[i-1])
# 绘制计算结果
plt.plot(np.linspace(0, 2, nx), u)
plt.show()
```
代码解释:
1. 首先定义计算参数,包括网格数、时间步数、空间步长、时间步长、平流速度等。
2. 初始化初始条件,即定义初始状态下的 u 值。
3. 迭代计算,使用迎风格式计算一维线性平流方程的数值解。其中,un 表示上一个时间步的 u 值,i 表示网格位置。
4. 绘制计算结果,使用 matplotlib 库绘制 u 随空间位置变化的曲线。
相关问题
迎风格式计算一维线性平流方程数值解
一维线性平流方程的一般形式为:
$$\frac{\partial u}{\partial t} + a\frac{\partial u}{\partial x} = 0$$
其中,$u$ 是待求函数,$a$ 是常数,表示平流速度。为了求解该方程的数值解,我们采用迎风格式。
迎风格式的离散形式为:
$$\frac{u_i^{n+1}-u_i^n}{\Delta t} + a\frac{u_i^n-u_{i-1}^n}{\Delta x} \leq 0$$
其中,$u_i^n$ 表示 $u(x_i,t_n)$ 的近似值,$\Delta t$ 和 $\Delta x$ 分别表示时间步长和空间步长。上式中的不等式表示采用迎风格式时,数值解是稳定的。
将上式变形得到:
$$u_i^{n+1}=u_i^n-a\frac{\Delta t}{\Delta x}(u_i^n-u_{i-1}^n)$$
这是迎风格式的迭代公式,用该公式可以递推求解 $u(x_i,t_{n+1})$ 的近似值。初始条件 $u(x,0)$ 可以通过插值得到,边界条件需要根据具体情况设定。
蛙跃格式计算一维线性平流方程数值解的python代码
以下是使用蛙跃格式计算一维线性平流方程数值解的 Python 代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义初始条件和常数
L = 1 # 空间长度
T = 1 # 模拟时间
N = 100 # 空间分割数
M = 1000 # 时间分割数
dx = L / N # 空间步长
dt = T / M # 时间步长
c = 1 # 对流速度
r = c * dt / dx # 定义 Courant 数
# 初始化 u(x,0)
x = np.linspace(0, L, N+1)
u0 = np.sin(2*np.pi*x)
# 对流方程的蛙跃格式求解
u = u0
for n in range(1, M+1):
up = u.copy()
for i in range(1, N):
u[i] = up[i] - r/2*(up[i+1]-up[i-1]) + r**2/2*(up[i+1]-2*up[i]+up[i-1])
# 边界条件
u[0] = u[1]
u[N] = u[N-1]
# 画图
plt.plot(x, u)
plt.xlabel('x')
plt.ylabel('u(x,T)')
plt.title('对流方程的蛙跃格式')
plt.show()
```
这段代码使用 numpy 和 matplotlib 库,与 MATLAB 代码类似,只是语法略有不同。
阅读全文