迎风格式计算一维线性平流方程数值解的python代码
时间: 2024-02-04 18:03:54 浏览: 223
迎风格式计算
以下是一维线性平流方程的迎风格式计算的 Python 代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义计算参数
nx = 101 # 网格数
nt = 100 # 时间步数
dx = 2 / (nx - 1) # 空间步长
dt = 0.02 # 时间步长
c = 1 # 平流速度
# 初始化初始条件
u = np.ones(nx)
u[int(0.5/dx):int(1/dx+1)] = 2
# 迭代计算
un = np.ones(nx)
for n in range(nt):
un = u.copy()
for i in range(1, nx):
u[i] = un[i] - c * dt / dx * (un[i] - un[i-1])
# 绘制计算结果
plt.plot(np.linspace(0, 2, nx), u)
plt.show()
```
代码解释:
1. 首先定义计算参数,包括网格数、时间步数、空间步长、时间步长、平流速度等。
2. 初始化初始条件,即定义初始状态下的 u 值。
3. 迭代计算,使用迎风格式计算一维线性平流方程的数值解。其中,un 表示上一个时间步的 u 值,i 表示网格位置。
4. 绘制计算结果,使用 matplotlib 库绘制 u 随空间位置变化的曲线。
阅读全文