求lim┬(n→∞)〖[1+(1 )/n〗+1/n^2 ]^n
时间: 2024-04-21 07:30:08 浏览: 159
重要极限公式limx→∞{1+1/x)x=e的新证法及推广 (2013年)
可以使用自然对数来求解这个极限,具体步骤如下:
lim┬(n→∞)[1+(1/n)+1/n^2]^n
= lim┬(n→∞)e^(n ln(1+(1/n)+1/n^2))
= e^lim┬(n→∞)(n ln(1+(1/n)+1/n^2))
接下来,我们可以使用泰勒展开式来求解ln(1+x),即:
ln(1+x) = x - x^2/2 + x^3/3 - ...
当x趋近于0时,其余项可以忽略不计,因此:
ln(1+x) ≈ x
将x=(1/n)+1/n^2代入,得到:
ln(1+(1/n)+1/n^2) ≈ (1/n)+1/n^2
代入原式中,得到:
lim┬(n→∞)[1+(1/n)+1/n^2]^n
= e^lim┬(n→∞)(n ln(1+(1/n)+1/n^2))
≈ e^lim┬(n→∞)(n/n + 1/n^2)
= e^1
因此,极限的值为e。
阅读全文