【Full Analysis of Features from OpenCV Versions】: From 0.1 to 5.0, Witnessing the Evolutionary Journey of OpenCV

发布时间: 2024-09-15 10:26:45 阅读量: 27 订阅数: 40
ZIP

OpenCV 5.0 预览版压缩包几功能模块介绍;OpenCV 5.0 预览版压缩包几功能模块介绍;OpenCV 5.0 预览版

目录

Full Analysis of OpenCV Version Features: From 0.1 to 5.0, Witnessing the Evolutionary Journey of OpenCV

1. Overview of OpenCV

OpenCV (Open Source Computer Vision Library) is an open-source computer vision library widely used in image processing, machine learning, and computer vision fields. It provides a series of powerful algorithms and functions for image processing, feature extraction, object detection, machine learning model training, and deployment.

Initially released by Intel Corporation in 1999, OpenCV has been continuously developed and updated since then. It initially focused on image processing but has gradually expanded its functionality to include machine learning, deep learning, and mobile development. OpenCV supports multiple platforms and can be used on Windows, Linux, macOS, and mobile devices.

2. Evolution of OpenCV Versions

2.1 OpenCV 0.1-1.0: Foundation Construction and Image Processing

The early versions of OpenCV (0.1-1.0) primarily focused on the foundational construction and functionality of image processing.

Code Example:

  1. import cv2
  2. # Read image
  3. image = cv2.imread('image.jpg')
  4. # Convert image to grayscale
  5. gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  6. # Display image
  7. cv2.imshow('Original Image', image)
  8. cv2.imshow('Gray Image', gray_image)
  9. cv2.waitKey(0)
  10. cv2.destroyAllWindows()

Logical Analysis:

  • The cv2.imread() function reads an image from a file path and stores it in the image variable.
  • The cv2.cvtColor() function converts the image from the BGR (Blue-Green-Red) color space to a grayscale image and stores it in the gray_image variable.
  • The cv2.imshow() function displays the original and grayscale images.
  • The cv2.waitKey(0) function waits for the user to press any key to close the window.
  • The cv2.destroyAllWindows() function closes all open windows.

Parameter Explanation:

  • cv2.imread() function:
    • filename: Image file path.
  • cv2.cvtColor() function:
    • image: Input image.
    • code: Color space conversion code, in this case, cv2.COLOR_BGR2GRAY.
  • cv2.imshow() function:
    • window_name: Window name.
    • image: Image to display.
  • cv2.waitKey(0) function:
    • delay: Milliseconds to wait for any key press, where 0 means wait indefinitely.
  • cv2.destroyAllWindows() function: No parameters.

2.2 OpenCV 2.0-3.0: Breakthroughs in Machine Learning and Computer Vision

The OpenCV 2.0-3.0 versions witnessed significant enhancements in machine learning and computer vision capabilities.

Code Example:

  1. import cv2
  2. # Use Haar cascade classifier for face detection
  3. face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
  4. # Read image
  5. image = cv2.imread('image.jpg')
  6. # Convert to grayscale
  7. gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  8. # Face detection
  9. faces = face_cascade.detectMultiScale(gray_image, 1.1, 5)
  10. # Draw face bounding boxes on the image
  11. for (x, y, w, h) in faces:
  12. cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
  13. # Display image
  14. cv2.imshow('Detected Faces', image)
  15. cv2.waitKey(0)
  16. cv2.destroyAllWindows()

Logical Analysis:

  • The cv2.CascadeClassifier() function loads a Haar cascade classifier for face detection.
  • The cv2.detectMultiScale() function detects faces in the grayscale image and returns the coordinates of the face bounding boxes.
  • The cv2.rectangle() function draws the face bounding boxes on the image.
  • The cv2.imshow() function displays the image with detected faces.

Parameter Explanation:

  • cv2.CascadeClassifier() function:
    • filename: Path to the Haar cascade classifier file.
  • cv2.detectMultiScale() function:
    • image: Input image.
    • scaleFactor: Scaling factor of the detection window size.
    • minNeighbors: Minimum number of faces detected in each detection window.
  • cv2.rectangle() function:
    • image: Input image.
    • pt1: Coordinates of the top-left corner of the bounding box.
    • pt2: Coordinates of the bottom-right corner of the bounding box.
    • color: Color of the bounding box.
    • thickness: Thickness of the bounding box.
  • cv2.imshow() function:
    • window_name: Window name.
    • image: Image to display.

2.3 OpenCV 4.0-5.0: The Rise of Deep Learning and Mobile Development

The OpenCV 4.0-5.0 versions introduced support for deep learning and mobile development, making it applicable in a broader range of scenarios.

Code Example:

  1. import cv2
  2. # Load a pre-trained deep learning model
  3. model = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt', 'model.caffemodel')
  4. # Read image
  5. image = cv2.imread('image.jpg')
  6. # Preprocess the image
  7. blob = cv2.dnn.blobFromImage(image, 0.007843, (300, 300), 127.5)
  8. # Set input
  9. model.setInput(blob)
  10. # Forward propagation
  11. detections = model.forward()
  12. # Parse detection results
  13. for i in np.arange(0, detections.shape[2]):
  14. confidence = detections[0, 0, i, 2]
  15. if confidence > 0.2:
  16. x1 = int(detections[0, 0, i, 3] * image.shape[1])
  17. y1 = int(detections[0, 0, i, 4] * image.shape[0])
  18. x2 = int(detections[0, 0, i, 5] * image.shape[1])
  19. y2 = int(detections[0, 0, i, 6] * image.shape[0])
  20. cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
  21. # Display image
  22. cv2.imshow('Detected Objects', image)
  23. cv2.waitKey(0)
  24. cv2.destroyAllWindows()

Logical Analysis:

  • The cv2.dnn.readNetFromCaffe() function loads a pre-trained deep learning model.
  • The cv2.dnn.blobFromImage() function preprocesses the image into a format suitable for the deep learning model.
  • The model.setInput() function sets the input data.
  • The model.forward() function performs forward propagation.
  • Parse the detection results, draw bounding boxes, and display the image.

Parameter Explanation:

  • cv2.dnn.readNetFromCaffe() function:
    • prototxt: Path to the model deployment description file.
    • caffemodel: Path to the model weight file.
  • cv2.dnn.blobFromImage() function:
    • image: Input image.
    • scalefactor: Image scaling factor.
    • size: Image size.
    • mean: Image mean.
  • model.setInput() function:
    • blob: Input data.
  • model.forward() function: No parameters.
  • cv2.rectangle() function:
    • image: Input image.
    • pt1: Coordinates of the top-left corner of the bounding box.
    • pt2: Coordinates of the bottom-right corner of the bounding box.
    • color: Color of the bounding box.
    • thickness: Thickness of the bounding box.
  • cv2.imshow() function:
    • window_name: Window name.
    • image: Image to display.

3.1 Image Processing and Analysis

One of the core functions of OpenCV is image processing and analysis, which offers a range of powerful tools and algorithms that enable developers to perform various operations on images, including reading, transforming, displaying, enhancing, filtering, segmenting, and object detection.

3.1.1 Image Reading, Transformation, and Display

Image Reading

OpenCV provides various functions to read images, including:

  1. cv::imread(const std::string& filename, int flags = cv::IMREAD_COLOR);

Here, filename is the path to the image file, and flags specify the image reading mode (e.g., color, grayscale, transparency).

Image Transformation

OpenCV supports various image transformation operations, such as:

  1. cv::cvtColor(const cv::Mat& src, cv::Mat& dst, int code);

Here, src is the source image, dst is the target image, and code specifies the transformation type (e.g., BGR to RGB, grayscale to color).

Image Display

OpenCV provides the imshow() function to display images:

  1. cv::imshow(const std::string& winname, const cv::Mat& image);

Here, winname is the window name, and image is the image.

3.1.2 Image Enhancement and Filtering

Image Enhancement

OpenCV provides image enhancement algorithms, such as:

  1. cv::equalizeHist(const cv::Mat& src, cv::Mat& dst);

This function performs histogram equalization on the image, improving contrast.

Image Filtering

OpenCV provides a wide range of image filters, including:

  1. cv::GaussianBlur(const cv::Mat& src, cv::Mat& dst, cv::Size kernelSize, double sigmaX, double sigmaY);

This function applies Gaussian filtering to the image, blurring noise.

3.1.3 Image Segmentation and Object Detection

Image Segmentation

OpenCV provides image segmentation algorithms, such as:

  1. cv::kmeans(const cv::Mat& data, int K, cv::Mat& labels, cv::TermCriteria criteria, int attempts, cv::KMEANS_PP_CENTERS);

This function performs K-means clustering on the image, segmenting it into different regions.

Object Detection

OpenCV provides object detection algorithms, such as:

  1. cv::CascadeClassifier cascade;
  2. cascade.load("haarcascade_frontalface_default.xml");

This code loads a Haar cascade classifier for detecting faces in images.

4. OpenCV Practical Applications

4.1 Image Processing Practice

4.1.1 Face Recognition and Tracking

Face Recognition

Face recognition is a significant task in computer vision, capable of identifying and verifying individual identities. OpenCV provides a suite of face recognition algorithms, including:

  • Face Detection: Haar cascade classifiers, deep learning models (e.g., MTCNN)
  • Face Alignment: Algorithms for aligning eyes and nose
  • Face Feature Extraction: Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG)
  • Face Recognition: Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Support Vector Machines (SVM)

Code Example:

  1. import cv2
  2. # Load face detection model
  3. face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
  4. # Load video stream
  5. cap = cv2.VideoCapture(0)
  6. while True:
  7. # Read frame
  8. ret, frame = cap.read()
  9. if not ret:
  10. break
  11. # Convert to grayscale
  12. gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
  13. # Face detection
  14. faces = face_cascade.detectMultiScale(gray, 1.3, 5)
  15. # Draw face rectangles
  16. for (x, y, w, h) in faces:
  17. cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
  18. # Display frame
  19. cv2.imshow('frame', frame)
  20. # Exit on 'q'
  21. if cv2.waitKey(1) & 0xFF == ord('q'):
  22. break
  23. # Release video stream
  24. cap.release()
  25. cv2.destroyAllWindows()

Logical Analysis:

  1. Load the face detection model: Use a Haar cascade classifier to detect faces.
  2. Load video stream: Read frames from a camera or video file.
  3. Convert to grayscale: Convert color frames to grayscale images to improve detection efficiency.
  4. Face detection: Use the face detection model to detect faces in the grayscale image.
  5. Draw face rectangles: Draw rectangles around detected faces.
  6. Display frame: Show frames containing detected faces.
  7. Exit on ‘q’: Exit the loop when the ‘q’ key is pressed.

Parameter Explanation:

  • 1.3: The scaling factor for the face detection model.
  • 5: The minimum number of neighbors for the face detection model.

4.1.2 Image Stitching and Panorama Generation

Image Stitching

Image stitching is the process of combining multiple overlapping images into a single panoramic image. OpenCV provides a series of image stitching algorithms, including:

  • Image Registration: Feature matching, image warping
  • Image Blending: Feathering, multi-band blending

Panorama Generation

Panorama generation is the process of stitching multiple overlapping images into a 360-degree panoramic image. OpenCV provides a series of panorama generation algorithms, including:

  • Spherical Projection: Projecting images onto a spherical surface
  • Cylindrical Projection: Projecting images onto a cylindrical surface

Code Example:

  1. import cv2
  2. import numpy as np
  3. # Load images
  4. images = []
  5. for i in range(1, 5):
  6. img = cv2.imread(f'image{i}.jpg')
  7. images.append(img)
  8. # Image registration
  9. stitcher = cv2.Stitcher_create()
  10. status, pano = stitcher.stitch(images)
  11. # Display panorama
  12. if status == cv2.Stitcher_OK:
  13. cv2.imshow('pano', pano)
  14. cv2.waitKey()
  15. cv2.destroyAllWindows()
  16. else:
  17. print('Stitching failed')

Logical Analysis:

  1. Load images: Load the images to be stitched.
  2. Image registration: Use the Stitcher class to register the images.
  3. Image stitching: Use the Stitcher class to stitch the registered images into a panorama.
  4. Display panorama: Display the stitched panoramic image.

Parameter Explanation:

  • cv2.Stitcher_create(): Create a Stitcher object.
  • status: Stitching status; if cv2.Stitcher_OK, stitching is successful.
  • pano: The stitched panoramic image.

5.1 OpenCV Environment Configuration and Optimization

Environment Configuration

Installing and configuring OpenCV is relatively straightforward, but some environment configurations are necessary to achieve optimal performance.

1. Dependency Library Installation

OpenCV relies on several external libraries, such as NumPy, SciPy, and Matplotlib. Ensure these libraries are installed before installing OpenCV.

2. OpenCV Installation

OpenCV can be installed in various ways, including:

  • Using package managers (such as pip or conda)
  • Compiling from source
  • Using precompiled binaries

Using package managers is recommended as it is the simplest method.

3. Environment Variable Setup

After installing OpenCV, set environment variables to tell the system where to find the libraries and header files.

  • Windows: Add the following environment variables in “System Properties”:
    • OPENCV_DIR: Points to the OpenCV installation directory
    • PATH: Add %OPENCV_DIR%\bin
  • Linux/macOS: Add the following lines to the .bashrc or .zshrc ***
    • export OPENCV_DIR=/path/to/opencv
    • export PATH=$PATH:$OPENCV_DIR/bin

Performance Optimization

Common methods for optimizing OpenCV performance include:

1. Using Optimized Compilers

Using an optimized compiler (such as Clang or GCC) can generate faster code.

2. Using Multithreading

OpenCV supports multithreading, which can improve the performance of image processing tasks.

3. Using GPU Acceleration

OpenCV can utilize GPU acceleration through CUDA or OpenCL, which can significantly increase processing speed.

4. Using Caching

Caching frequently accessed data can reduce I/O operations, thereby improving performance.

5. Using Appropriate Data Structures

Choosing appropriate data structures (such as matrices or arrays) can optimize code performance.

Code Example

The following code example demonstrates how to optimize OpenCV code to improve performance:

  1. import cv2
  2. # Using multithreading
  3. img = cv2.imread('image.jpg')
  4. gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  5. edges = cv2.Canny(gray, 100, 200)
  6. # Using GPU acceleration
  7. gpu_img = cv2.cuda.GpuMat(img)
  8. gpu_gray = cv2.cuda.cvtColor(gpu_img, cv2.COLOR_BGR2GRAY)
  9. gpu_edges = cv2.cuda.Canny(gpu_gray, 100, 200)
  10. # Using caching
  11. cache = {}
  12. def get_image(path):
  13. if path not in cache:
  14. cache[path] = cv2.imread(path)
  15. return cache[path]

By using these optimization techniques, OpenCV code performance can be significantly improved.

6. Future Outlook and Trends for OpenCV

As an ever-evolving open-source library, the future development direction of OpenCV is of great interest. The following are some industry expert predictions on the future outlook and trends for OpenCV:

6.1 In-Depth Integration of Artificial Intelligence

The integration of artificial intelligence (AI) technology with OpenCV will continue to deepen. OpenCV will serve as the underlying framework for AI algorithms and models, providing robust image processing and analysis capabilities for computer vision and machine learning tasks.

6.2 Popularization of Cloud and Edge Computing

With the popularization of cloud and edge computing, OpenCV will be used to process large amounts of image and video data in distributed environments. This will enable real-time processing and analysis, thereby expanding the scope of OpenCV applications.

6.3 Optimization of Deep Learning Models

OpenCV will continue to optimize its support for deep learning models. This includes integrating new deep learning frameworks, providing optimizations for specific hardware platforms, and developing new algorithms and tools to improve the performance and efficiency of deep learning models.

6.4 Continuous Development for Mobile Platforms

The development of OpenCV for mobile platforms will continue to flourish. With the proliferation of smartphones and Internet of Things (IoT) devices, OpenCV will provide powerful image processing and computer vision capabilities for mobile applications.

6.5 Exploration of Emerging Technologies

OpenCV will also explore emerging technologies such as Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR). These technologies will provide OpenCV with new application areas, such as virtual try-ons, interactive games, and immersive experiences.

6.6 Community Collaboration and Contribution

The open-source nature of OpenCV will continue to promote community collaboration and contribution. Developers and researchers will continue to contribute to the development of OpenCV, adding new features, improving existing algorithms, and exploring new application areas.

corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

SaTScan软件的扩展应用:与其他统计软件的协同工作揭秘

![SaTScan软件的扩展应用:与其他统计软件的协同工作揭秘](https://cdn.educba.com/academy/wp-content/uploads/2020/07/Matlab-Textscan.jpg) # 1. SaTScan软件概述 SaTScan是一种用于空间、时间和空间时间数据分析的免费软件,它通过可变动的圆形窗口统计分析方法来识别数据中的异常聚集。本章将简要介绍SaTScan的起源、功能及如何在不同领域中得到应用。SaTScan软件特别适合公共卫生研究、环境监测和流行病学调查等领域,能够帮助研究人员和决策者发现数据中的模式和异常,进行预防和控制策略的制定。 在

【矩阵求逆的历史演变】:从高斯到现代算法的发展之旅

![【矩阵求逆的历史演变】:从高斯到现代算法的发展之旅](https://opengraph.githubassets.com/85205a57cc03032aef0e8d9eb257dbd64ba8f4133cc4a70d3933a943a8032ecb/ajdsouza/Parallel-MPI-Jacobi) # 1. 矩阵求逆概念的起源与基础 ## 1.1 起源背景 矩阵求逆是线性代数中的一个重要概念,其起源可以追溯到19世纪初,当时科学家们开始探索线性方程组的解法。早期的数学家如高斯(Carl Friedrich Gauss)通过消元法解决了线性方程组问题,为矩阵求逆奠定了基础。

SGMII传输层优化:延迟与吞吐量的双重提升技术

![SGMII传输层优化:延迟与吞吐量的双重提升技术](https://cdn.educba.com/academy/wp-content/uploads/2020/06/Spark-Accumulator-3.jpg) # 1. SGMII传输层优化概述 在信息技术不断发展的今天,网络传输的效率直接影响着整个系统的性能。作为以太网物理层的标准之一,SGMII(Serial Gigabit Media Independent Interface)在高性能网络设计中起着至关重要的作用。SGMII传输层优化,就是通过一系列手段来提高数据传输效率,减少延迟,提升吞吐量,从而达到优化整个网络性能的目

Java SPI与依赖注入(DI)整合:技术策略与实践案例

![Java SPI与依赖注入(DI)整合:技术策略与实践案例](https://media.geeksforgeeks.org/wp-content/uploads/20240213110312/jd-4.jpg) # 1. Java SPI机制概述 ## 1.1 SPI的概念与作用 Service Provider Interface(SPI)是Java提供的一套服务发现机制,允许我们在运行时动态地提供和替换服务实现。它主要被用来实现模块之间的解耦,使得系统更加灵活,易于扩展。通过定义一个接口以及一个用于存放具体服务实现类的配置文件,我们可以轻松地在不修改现有代码的情况下,增加或替换底

Python环境监控高可用构建:可靠性增强的策略

![Python环境监控高可用构建:可靠性增强的策略](https://softwareg.com.au/cdn/shop/articles/16174i8634DA9251062378_1024x1024.png?v=1707770831) # 1. Python环境监控高可用构建概述 在构建Python环境监控系统时,确保系统的高可用性是至关重要的。监控系统不仅要在系统正常运行时提供实时的性能指标,而且在出现故障或性能瓶颈时,能够迅速响应并采取措施,避免业务中断。高可用监控系统的设计需要综合考虑监控范围、系统架构、工具选型等多个方面,以达到对资源消耗最小化、数据准确性和响应速度最优化的目

雷达数据压缩技术突破:提升效率与存储优化新策略

![雷达数据压缩技术突破:提升效率与存储优化新策略](https://img-blog.csdnimg.cn/20210324200810860.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ExNTUxNjIyMTExOA==,size_16,color_FFFFFF,t_70) # 1. 雷达数据压缩技术概述 在现代军事和民用领域,雷达系统产生了大量的数据,这些数据的处理和存储是技术进步的关键。本章旨在对雷达数据压缩技术进行简要

原型设计:提升需求沟通效率的有效途径

![原型设计:提升需求沟通效率的有效途径](https://wx2.sinaimg.cn/large/005PhchSly1hf5txckqcdj30zk0ezdj4.jpg) # 1. 原型设计概述 在现代产品设计领域,原型设计扮演着至关重要的角色。它不仅是连接设计与开发的桥梁,更是一种沟通与验证设计思维的有效工具。随着技术的发展和市场对产品快速迭代的要求不断提高,原型设计已经成为产品生命周期中不可或缺的一环。通过创建原型,设计师能够快速理解用户需求,验证产品概念,及早发现潜在问题,并有效地与项目相关方沟通想法,从而推动产品向前发展。本章将对原型设计的必要性、演变以及其在产品开发过程中的作

【信号异常检测法】:FFT在信号突变识别中的关键作用

![【Origin FFT终极指南】:掌握10个核心技巧,实现信号分析的质的飞跃](https://www.vxworks.net/images/fpga/fpga-fft-algorithm_6.png) # 1. 信号异常检测法基础 ## 1.1 信号异常检测的重要性 在众多的IT和相关领域中,从工业监控到医疗设备,信号异常检测是确保系统安全和可靠运行的关键技术。信号异常检测的目的是及时发现数据中的不规则模式,这些模式可能表明了设备故障、网络攻击或其他需要立即关注的问题。 ## 1.2 信号异常检测方法概述 信号异常检测的方法多种多样,包括统计学方法、机器学习方法、以及基于特定信号

【EDEM仿真非球形粒子专家】:揭秘提升仿真准确性的核心技术

![【EDEM仿真非球形粒子专家】:揭秘提升仿真准确性的核心技术](https://opengraph.githubassets.com/a942d84b65ad1f821b56c78f3b039bb3ccae2a02159b34df2890c5251f61c2d0/jbatnozic/Quad-Tree-Collision-Detection) # 1. EDEM仿真软件概述与非球形粒子的重要性 ## 1.1 EDEM仿真软件简介 EDEM是一种用于粒子模拟的仿真工具,能够准确地模拟和分析各种离散元方法(Discrete Element Method, DEM)问题。该软件广泛应用于采矿

社交网络分析工具大比拼:Gephi, NodeXL, UCINET优劣全面对比

![社交网络分析工具大比拼:Gephi, NodeXL, UCINET优劣全面对比](https://dz2cdn1.dzone.com/storage/article-thumb/235502-thumb.jpg) # 1. 社交网络分析概述 社交网络分析是理解和揭示社会结构和信息流的一种强有力的工具,它跨越了人文和社会科学的边界,找到了在计算机科学中的一个牢固立足点。这一分析不仅限于对人际关系的研究,更扩展到信息传播、影响力扩散、群体行为等多个层面。 ## 1.1 社交网络分析的定义 社交网络分析(Social Network Analysis,简称SNA)是一种研究社会结构的方法论

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )