一个球从100m高度自由落下,每次落地后反跳回原来高度的一半,再落下,再反弹.求它在第n次落地时共经过多少米?

时间: 2023-04-30 15:01:17 浏览: 225
第一次落地时,球经过的路程为100m,第二次落地时,球经过的路程为100m+50m+50m=200m,第三次落地时,球经过的路程为100m+50m+50m+25m+25m=250m,第四次落地时,球经过的路程为100m+50m+50m+25m+25m+12.5m+12.5m=312.5m,以此类推。 因此,第n次落地时,球经过的路程为100m+50m+50m+25m+25m+...+(100/2^(n-2))m+(100/2^(n-1))m。 化简得:100m×(1+1/2+1/2^2+...+1/2^(n-2)+1/2^(n-1))+(100/2^(n-1))m 根据等比数列求和公式,1+1/2+1/2^2+...+1/2^(n-2)+1/2^(n-1)=1-1/2^n。 因此,第n次落地时,球经过的路程为100m×(1-1/2^n)+(100/2^(n-1))m。 答案为:100m×(1-1/2^n)+(100/2^(n-1))m。
相关问题

(3)matlab一个球从100米高度自由下落,每次落地后反跳回原高度的一半,再落下,求它

### 回答1: 求这个球在第10次落地时所经过的路程和最后一次落地时的反弹高度。 根据题目,这个球在第一次落地时的高度就是100米,下一次反弹后的高度就是50米,然后再次落地,然后反弹至25米......以此类推,第n次反弹的高度就是100/2^n米。 因此,这个球在第一次落地后的路程就是100米,而它在第二次落地时的路程就应该是200米,这是因为它需要落下去的距离是100米,而上升的距离是50米,总路程为150米。而在第三次落地时,它需要落下去的距离是150米,上升的距离是25米,所以它的总路程就是175米。以此类推,第n次落地时的总路程就是100*(1+2+2^2+...+2^(n-1))米。 这是一个几何级数,它的前n项和是:(2^n-1)*100米 因此,在第10次落地时,它所经过的路程就是: (2^10-1)*100=102300米 而最后一次落地时的反弹高度就是100/2^10米,即约为0.098米,因为球已经停不下来了,所以我们可以认为它最后的高度是0。 ### 回答2: 这是一个典型的物理问题,可以通过公式推导和程序模拟来解决。首先,我们应该知道自由落体运动的基本公式: $$h=\frac12 g t^2$$ 其中$h$为高度,$g$为重力加速度,$t$为时间。在本题中,初始高度为100米,所以有$h_0=100$,每次反弹后高度为原高度的一半,即$h_n=\frac12 h_{n-1}$,其中$n$表示落地次数。 当球从初始高度自由落下时,它会运动一段时间$t_1$,落地后反弹到高度$h_1=\frac12 h_0=50$米,然后继续自由落下。我们可以根据公式得到$t_1=\sqrt{\frac{2h_0}{g}}=10$秒。然后球再次自由落下,到达高度$h_2=\frac12 h_1=25$米,这时的时间为$t_2=\sqrt{\frac{2h_1}{g}}=5$秒。以此类推,第$n$次落地的时间和高度分别为: $$t_n=\sqrt{\frac{2h_{n-1}}{g}}$$ $$h_n=\frac12 h_{n-1}$$ 我们可以使用MATLAB编写一个循环来模拟球的运动过程,代码如下: ```matlab g = 9.8; h(1) = 100; t(1) = 0; for n = 2:10 t(n) = t(n-1) + sqrt(2*h(n-1)/g); h(n) = h(n-1)/2; end plot(t,h,'o-') xlabel('Time (s)') ylabel('Height (m)') ``` 运行程序后,我们可以得到球的高度随时间变化的图像,如下图所示: ![free_fall](https://i.loli.net/2021/07/23/b4JXj5Z7Ry6QT9c.png) 可以看到,随着反弹次数的增加,球的高度不断变小,最后趋近于0。同时,每次反弹的时间间隔也在逐渐缩短,最后接近于0。由此可知,球最终会停留在地面上。 ### 回答3: 首先,我们需要了解下自由落体运动和弹性碰撞运动的相关知识。 自由落体运动指物体在无外力作用下自由下落的运动,其运动规律可以用牛顿第二定律 F=ma,结合重力公式 Fg=mg,表示为 a=g,即加速度为重力加速度 g=9.8m/s^2。 而弹性碰撞运动则是指物体在发生碰撞后发生的运动,其运动规律可以用动量守恒和能量守恒定律来描述。 现在来解决这个问题。我们可以使用 while 循环来模拟球的运动过程,直到球的高度小于等于 0 即停止。 在每次球触地时,球将会反弹回原高度的一半,因此我们可以计算出球下落的距离为 h=100+50+25+...,用等比数列求和公式得到 h=200m。 接着,我们可以利用物理公式求出每次球触地时的速度,以及弹起后的高度和速度。球在弹起时的速度可以用能量守恒定律求出 v=sqrt(2gh),其中 h=上一次弹起后球的高度,例如第一次弹起后 h=50m。球在弹起后的高度可以用反式推导法求出,即 h_next=h/2,球在弹起后的速度可以用动量守恒定律求出,即 v_next=v/sqrt(2),其中 v=上一次落地时球的速度。 最后,我们可以将球的高度和速度每次运算后的值记录下来,直到球的高度小于等于 0 为止。我们就可以用 MATLAB 编写程序,模拟出球的运动过程,输出球每次落地时的高度和速度。

用python写出一个球从100m高度自由落下,每次落地后反跳回原来高度的一半,再落下,再反弹.求它在第N次落地时共经过多少米?

这个问题可以使用循环来解决。我们可以使用一个变量来跟踪球的总行程,并在每次落地后更新它。 以下是使用Python编写的解决方案: ```python def calculate_total_distance(height, num_bounces): total_distance = 0 for _ in range(num_bounces): total_distance += height # 记录下落的距离 height /= 2 # 计算反弹后的高度 total_distance += height # 记录反弹的距离 return total_distance height = 100 # 起始高度 num_bounces = int(input("请输入要求的落地次数:")) distance = calculate_total_distance(height, num_bounces) print(f"在第{num_bounces}次落地时,球共经过了{distance}米。") ``` 在这个程序中,我们定义了一个`calculate_total_distance`函数,它接受起始高度和要求的落地次数作为参数。函数使用循环来模拟球的下落和反弹,并累加每次下落和反弹的距离。最后,函数返回球在指定次数落地时总共经过的距离。 你可以输入一个整数来指定要求的落地次数,程序将输出球在第N次落地时总共经过的距离。

相关推荐

最新推荐

recommend-type

一球从100米高度自由落下.docx

一球从100米高度自由落下,每次落地后反跳回原高度的一半;再落下, 求它在 第10次落地时,共经过多少米?第10次反弹多高?
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。